Zhou Yu, Wang Hai-peng, Chen Si-zhe. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching[J]. Journal of Radars, 2015, 4(6): 666-673. doi: 10.12000/JR15080
Citation: LYU Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-assisted SAR target classification based on unsupervised domain adaptation and model interpretability analysis[J]. Journal of Radars, 2022, 11(1): 168–182. doi: 10.12000/JR21179

Simulation-assisted SAR Target Classification Based on Unsupervised Domain Adaptation and Model Interpretability Analysis

DOI: 10.12000/JR21179
Funds:  The National Natural Science Foundation of China (61991421)
More Information
  • Corresponding author: QIU Xiaolan, xlqiu@mail.ie.ac.cn
  • Received Date: 2021-11-14
  • Accepted Date: 2022-01-14
  • Rev Recd Date: 2022-01-13
  • Available Online: 2022-01-20
  • Publish Date: 2022-02-16
  • Convolutional Neural Networks (CNNs) are widely used in optical image classification. In the case of Synthetic Aperture Radar (SAR) images, obtaining sufficient training examples for CNNs is challenging due to the difficulties in and high cost of data annotation. Meanwhile, with the advancement of SAR image simulation technology, generating a large number of simulated SAR images with annotation is not difficult. However, due to the inevitable difference between simulated and real SAR images, it is frequently difficult to directly support the real SAR image classification. As a result, this study proposes a simulation-assisted SAR target classification method based on unsupervised domain adaptation. The proposed method integrates Multi-Kernel Maximum Mean Distance (MK-MMD) with domain adversarial training to address the domain shift problem encountered during task transition from simulated to real-world SAR image classification. Furthermore, Layer-wise Relevance Propagation (LRP) and Contrastive Layer-wise Relevance Propagation (CLRP) are utilized to explore how the proposed method influences the model decision. The experimental results show that by modifying the focus areas of the model to obtain domain-invariant features for classification, the proposed method can significantly improve classification accuracy.

     

  • [1]
    EL-DARYMLI K, MCGUIRE P, POWER D, et al. Target detection in synthetic aperture radar imagery: A state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 071598. doi: 10.1117/1.JRS.7.071598
    [2]
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
    [3]
    ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. doi: 10.1109/TGRS.2017.2743222
    [4]
    PAN Zongxu, BAO Xianjie, ZHANG Yueting, et al. Siamese network based metric learning for SAR target classification[C]. IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1342–1345.
    [5]
    董纯柱, 胡利平, 朱国庆, 等. 地面车辆目标高质量SAR图像快速仿真方法[J]. 雷达学报, 2015, 4(3): 351–360. doi: 10.12000/JR15057

    DONG Chunzhu, HU Liping, ZHU Guoqing, et al. Efficient simulation method for high quality SAR images of complex ground vehicles[J]. Journal of Radars, 2015, 4(3): 351–360. doi: 10.12000/JR15057
    [6]
    SONG Qian, CHEN Hui, XU Feng, et al. EM simulation-aided zero-shot learning for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 1092–1096. doi: 10.1109/LGRS.2019.2936897
    [7]
    胡利平, 董纯柱, 刘锦帆, 等. 基于SAR仿真图像的地面车辆非同源目标识别[J]. 系统工程与电子技术, 2021, 43(12): 3518–3525. doi: 10.12305/j.issn.1001-506X.2021.12.13

    HU Liping, DONG Chunzhu, LIU Jinfan, et al. Non-homologous target recognition of ground vehicles based on SAR simulation image[J]. Systems Engineering and Electronics, 2021, 43(12): 3518–3525. doi: 10.12305/j.issn.1001-506X.2021.12.13
    [8]
    MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1484–1488. doi: 10.1109/LGRS.2017.2717486
    [9]
    ZHANG Linbin, LENG Xiangguang, FENG Sijia, et al. Domain knowledge powered two-stream deep network for few-shot SAR vehicle recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–15. doi: 10.1109/TGRS.2021.3116349
    [10]
    范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238

    FAN Cangning, LIU Peng, XIAO Ting, et al. A review of deep domain adaptation: General situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238
    [11]
    TZENG E, HOFFMAN J, ZHANG Ning, et al. Deep domain confusion: Maximizing for domain invariance[EB/OL]. https://arxiv.org/abs/1412.3474v1, 2014.
    [12]
    LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 97–105.
    [13]
    LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Deep transfer learning with joint adaptation networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 2208–2217.
    [14]
    ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713–1722. doi: 10.1109/TNNLS.2020.2988928
    [15]
    GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    [16]
    SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3723–3732.
    [17]
    PEI Zhongyi, CAO Zhangjie, LONG Mingsheng, et al. Multi-adversarial domain adaptation[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 3934–3941.
    [18]
    DU Zhekai, LI Jingjing, SU Hongzu, et al. Cross-domain gradient discrepancy minimization for unsupervised domain adaptation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 3936–3945.
    [19]
    LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]. Neural Information Processing Systems, Montréal, Canada, 2018: 1647–1657.
    [20]
    GHIFARY M, KLEIJN W B, ZHANG Mengjie, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 597–613.
    [21]
    BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351.
    [22]
    SANKARANARAYANAN S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: Aligning domains using generative adversarial networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8503–8512.
    [23]
    HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/TGRS.2019.2947634
    [24]
    WANG Ke, ZHANG Gong, and LEUNG H. SAR target recognition based on cross-domain and cross-task transfer learning[J]. IEEE Access, 2019, 7: 153391–153399. doi: 10.1109/ACCESS.2019.2948618
    [25]
    ZHANG Wei, ZHU Yongfeng, and FU Qiang. Adversarial deep domain adaptation for multi-band SAR images classification[J]. IEEE Access, 2019, 7: 78571–78583. doi: 10.1109/ACCESS.2019.2922844
    [26]
    XU Yongjie, LANG Haitao, NIU Lihui, et al. Discriminative adaptation regularization framework-based transfer learning for ship classification in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1786–1790. doi: 10.1109/LGRS.2019.2907139
    [27]
    BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. PLoS One, 2015, 10(7): e0130140. doi: 10.1371/journal.pone.0130140
    [28]
    GU Jindong, YANG Yinchong, and TRESP V. Understanding individual decisions of CNNs via contrastive backpropagation[C]. The 14th Asian Conference on Computer Vision, Perth, Australia, 2018: 119–134.
    [29]
    GRETTON A, SRIPERUMBUDUR B, SEJDINOVIC D, et al. Optimal kernel choice for large-scale two-sample tests[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1205–1213.
    [30]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    [31]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [32]
    CHOI J, JEONG M, KIM T, et al. Pseudo-labeling curriculum for unsupervised domain adaptation[C]. The 30th British Machine Vision Conference, Cardiff, UK, 2019: 67.
    [33]
    SHU Yang, CAO Zhangjie, LONG Mingsheng, et al. Transferable curriculum for weakly-supervised domain adaptation[C]. The 33rd AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 4951–4958.
    [34]
    SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 618–626.
    [35]
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833.
    [36]
    MONTAVON G, LAPUSCHKIN S, BINDER A, et al. Explaining nonlinear classification decisions with deep taylor decomposition[J]. Pattern Recognition, 2017, 65: 211–222. doi: 10.1016/j.patcog.2016.11.008
    [37]
    VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
  • Relative Articles

    [1]LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107
    [2]CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, GUAN Jian, DU Xiaolin, XUE Wei, SU Ningyuan, WANG Jinhao. Radar Intelligent Processing Technology and Application for Weak Target[J]. Journal of Radars, 2024, 13(3): 501-524. doi: 10.12000/JR23160
    [3]WANG Canyu, JIANG Libing, REN Xiaoyuan, WANG Zhuang. Primitive-based 3D Abstraction Method for Spacecraft ISAR Images[J]. Journal of Radars, 2024, 13(3): 682-695. doi: 10.12000/JR23241
    [4]LIU Qi, YU Weidong, HONG Wen. Vehicle Detection in Multi-aspect SAR Images Based on Improved GOFRO[J]. Journal of Radars, 2023, 12(5): 1081-1096. doi: 10.12000/JR23042
    [5]ZHANG Fan, LU Shengtao, XIANG Deliang, YUAN Xinzhe. An Improved Superpixel-based CFAR Method for High-resolution SAR Image Ship Target Detection[J]. Journal of Radars, 2023, 12(1): 120-139. doi: 10.12000/JR22067
    [6]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [7]YAN Linjie, HAO Chengpeng, YIN Chaoran, SUN Weixuan, HOU Chaohuan. Modified Generalized Likelihood Ratio Test Detection Based on a Symmetrically Spaced Linear Array in Partially Homogeneous Environments[J]. Journal of Radars, 2021, 10(3): 443-452. doi: 10.12000/JR20140
    [8]GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059
    [9]GUO Qian, WANG Haipeng, XU Feng. Research Progress on Aircraft Detection and Recognition in SAR Imagery[J]. Journal of Radars, 2020, 9(3): 497-513. doi: 10.12000/JR20020
    [10]DAI Muchen, LENG Xiangguang, XIONG Boli, JI Kefeng. Sea-land Segmentation Method for SAR Images Based on Improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886-897. doi: 10.12000/JR20089
    [11]ZUO Lei, CHAN Xiuxiu, LU Xiaofei, LI Ming. A Weak Target Detection Method in Sea Clutter Based on Joint Space-time-frequency Decomposition[J]. Journal of Radars, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [12]Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066
    [13]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [14]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [15]Wu Yiquan, Wang Zhilai. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation[J]. Journal of Radars, 2017, 6(4): 349-358. doi: 10.12000/JR17019
    [16]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [17]Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [18]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
    [19]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [20]Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
  • Cited by

    Periodical cited type(7)

    1. 赵梓桐,谢军,陈丽. 基于改进PSO的分布式信号合成功率分配方法. 计算机测量与控制. 2025(01): 121-130 .
    2. 张世超,朱玉权,刘志永. 基于时延差和相位差结合的分布式相参参数在线精确估计方法. 舰船电子对抗. 2025(01): 82-88+92 .
    3. 贲德. 机载有源相控阵火控雷达技术发展. 现代雷达. 2024(02): 1-15 .
    4. 欧阳晓凤,芮梓轩,曾芳玲,唐希雯. 稀疏节点直接序列扩频信号空间能量合成研究. 信息对抗技术. 2024(05): 62-73 .
    5. 蔡兴雨,王亚军,王旭,臧会凯,怀园园,朱思桥. 一种基于云边端架构的雷达组网协同系统设计方案. 现代雷达. 2024(09): 37-48 .
    6. 王元昊,王宏强,杨琪. 动平台分布孔径雷达相参合成探测方法与试验验证. 雷达学报. 2024(06): 1279-1297 . 本站查看
    7. 赵开发,宋虎,刘溶,王鑫海. 一种基于阵列构型与阵元数量联合优化的分布式雷达主瓣干扰抑制方法. 雷达学报. 2024(06): 1355-1369 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2452) PDF downloads(271) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint