Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
Citation: Du Kangning, Deng Yunkai, Wang Yu, Li Ning. Medium Resolution SAR Image Time-series Built-up Area Extraction Based on Multilayer Neural Network[J]. Journal of Radars, 2016, 5(4): 410-418. doi: 10.12000/JR16060

Medium Resolution SAR Image Time-series Built-up Area Extraction Based on Multilayer Neural Network

DOI: 10.12000/JR16060
Funds:

The National Natural Science Foundation of China (61301025), Hundred-Talent Program of the Chinese Academy of Sciences

  • Received Date: 2016-03-19
  • Rev Recd Date: 2016-06-12
  • Publish Date: 2016-08-28
  • To improve the accuracy and stability of built-up area extraction from Synthetic Aperture Radar (SAR) image time series, in this paper, we propose a multilayer neural-network-based built-up area extraction method that combines the characters of time-series images. The proposed method coarsely tags single images and obtains a large number of samples from time-series images that have been processed by a histogram specification procedure. To generate a training sample dataset, we use samples generated from one image to determine network depth and select samples with higher accuracy from the sample set taken from the time-series images. The final model is trained by the selected large and high quality training dataset. We perform two comparison experiments with 38 25-m resolution ENVISAT ASAR images. Using the proposed method, we achieved 90.2% minima accuracy and a 0.725 minima Kappa coefficient, which are much higher than those of the three conventional methods. Thus, the accuracy and stability of built-up area extraction are significantly improved. In addition, the method proposed in this paper has the advantages of requiring minimal manual operation, well generalization, and training efficiency.

     

  • [1]
    王璐, 张帆, 李伟, 等. 基于Gabor滤波器和局部纹理特征提取的SAR目标识别算法[J]. 雷达学报, 2015, 4(6): 658-665. Wang Lu, Zhang Fan, Li Wei, et al.. A method of SAR target recognition based on Gabor filter and local texture feature extraction[J]. Journal of Radars, 2015, 4(6): 658-665.
    [2]
    孙志军, 薛磊, 许阳明, 等. 基于多层编码器的SAR目标及阴影联合特征提取算法[J]. 雷达学报, 2013, 2(2): 195-202. Sun Zhi-jun, Xue Lei, Xu Yang-ming, et al.. Shared representation of SAR target and shadow based on multilayer auto-encoder[J]. Journal of Radars, 2013, 2(2): 195-202.
    [3]
    Gamba P, Aldrighi M, and Stasolla M. Robust extraction of urban area extents in HR and VHR SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(1): 27-34.
    [4]
    Hussain M, Chen D, Cheng A, et al.. Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91-106.
    [5]
    Voisin A, Krylov V A, Moser G, et al.. Classification of very high resolution SAR images of urban areas using copulas and texture in a hierarchical Markov random field model[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 96-100.
    [6]
    韩萍, 王欢. 基于改进的稀疏保持投影的SAR目标特征提取与识别[J]. 雷达学报, 2015, 4(6): 674-680. Han Ping and Wang Huan. Synthetic aperture radar target feature extraction and recognition based on improved sparsity preserving projections[J]. Journal of Radars, 2015, 4(6): 674-680.
    [7]
    Uslu E and Albayrak S. Curvelet-based synthetic aperture radar image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1071-1075.
    [8]
    Geng J, Fan J, Wang H, et al.. High-resolution SAR image classification via deep convolutional autoencoders[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2351-2355.
    [9]
    Hinton G E, Osindero S, and Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
    [10]
    Mnih V and Hinton G E. Learning to detect roads in high-resolution aerial images[C]. Computer Vision-ECCV 2010, Springer Berlin Heidelberg, 2010: 210-223.
    [11]
    Lv Q, Dou Y, Niu X, et al.. Classification of land cover based on deep belief networks using polarimetric RADARSAT-2 data[C]. 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, Canada, 2014: 4679-4682.
    [12]
    Gong M, Zhao J, Liu J, et al.. Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1): 125-138.
    [13]
    Rossetti G, Prati C, and Rucci A. Monitoring the urban environment with multitemporal SAR data[C]. 2015 IEEE Radar Conference (RadarCon),Arlington, VA, USA, 2015: 0622-0627.
    [14]
    Gonzalez R C, Woods R E著, 阮秋琦, 阮宇智, 译. 数字图像处理[M]. 第2版, 北京: 电子工业出版社, 2010: 74-79. Gonzalez R C, Woods R E, Ruan Qiuqi and Ruan Yuzhi. Digital Image Processing[M]. Beijing:Publishing House of Electronics Industry, 2010: 74-79.
    [15]
    Ioffe S and Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[OL]. arXiv: 1502.03167, 2015.
    [16]
    Glorot X, Bordes A, and Bengio Y. Deep sparse rectifier neural networks[C]. International Conference on Artificial Intelligence and Statistics, La Palma, Spain, 2011: 315-323.
    [17]
    Srivastava N, Hinton G, Krizhevsky A, et al.. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
    [18]
    Kingma D and Ba J. Adam: a method for stochastic optimization[OL]. arXiv: 1412.6980, 2014.
  • Relative Articles

    [1]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [2]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [3]LIU Tao, YANG Ziyuan, JIANG Yanni, GAO Gui. Review of Ship Detection in Polarimetric Synthetic Aperture Imagery (in English)[J]. Journal of Radars, 2021, 10(1): 1-19. doi: 10.12000/JR20155
    [4]ZHU Qingtao, YIN Junjun, ZENG Liang, YANG Jian. Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus[J]. Journal of Radars, 2021, 10(1): 49-60. doi: 10.12000/JR20120
    [5]PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061
    [6]QIN Xianxiang, YU Wangsheng, WANG Peng, CHEN Tianping, ZOU Huanxin. Weakly Supervised Classification of PolSAR Images Based on Sample Refinement with Complex-Valued Convolutional Neural Network[J]. Journal of Radars, 2020, 9(3): 525-538. doi: 10.12000/JR20062
    [7]HUA Wenqiang, WANG Shuang, GUO Yanhe, XIE Wen. Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree[J]. Journal of Radars, 2019, 8(4): 458-470. doi: 10.12000/JR18104
    [8]ZHANG Lamei, ZHANG Siyu, DONG Hongwei, ZHU Sha. Robust Classification of PolSAR Images Based on Pinball loss Support Vector Machine[J]. Journal of Radars, 2019, 8(4): 448-457. doi: 10.12000/JR19055
    [9]ZHANG Xiangrong, YU Xinyuan, TANG Xu, HOU Biao, JIAO Licheng. PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering[J]. Journal of Radars, 2019, 8(4): 425-435. doi: 10.12000/JR19059
    [10]HU Tao, LI Weihua, QIN Xianxiang, WANG Peng, YU Wangsheng, LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. doi: 10.12000/JR18065
    [11]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [12]She Xiaoqiang, Qiu Xiaolan, Lei Bin, Zhang Wei, Lu Xiaojun. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image[J]. Journal of Radars, 2017, 6(5): 554-563. doi: 10.12000/JR16149
    [13]Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(5): 533-540. doi: 10.12000/JR16133
    [14]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [15]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [16]Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. doi: 10.12000/JR16124
    [17]Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
    [18]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [19]Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019
    [20]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.1 %FULLTEXT: 20.1 %META: 71.8 %META: 71.8 %PDF: 8.1 %PDF: 8.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.7 %其他: 0.7 %Canada: 0.1 %Canada: 0.1 %China: 0.5 %China: 0.5 %India: 0.2 %India: 0.2 %Netherlands: 0.0 %Netherlands: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %XX: 0.1 %XX: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.5 %上海: 0.5 %上海市: 0.0 %上海市: 0.0 %东莞: 0.1 %东莞: 0.1 %东营: 0.0 %东营: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %包头: 0.0 %包头: 0.0 %北京: 15.1 %北京: 15.1 %北京市: 0.0 %北京市: 0.0 %北海: 0.1 %北海: 0.1 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南通: 0.0 %南通: 0.0 %印度: 0.5 %印度: 0.5 %古吉拉特: 0.2 %古吉拉特: 0.2 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宿迁: 0.2 %宿迁: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广元: 0.1 %广元: 0.1 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 2.4 %张家口: 2.4 %张家口市: 0.1 %张家口市: 0.1 %徐州: 0.0 %徐州: 0.0 %德黑兰: 0.1 %德黑兰: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.0 %扬州: 0.0 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.3 %昆明: 0.3 %杭州: 1.2 %杭州: 1.2 %梅州: 0.0 %梅州: 0.0 %武汉: 0.4 %武汉: 0.4 %永州: 0.1 %永州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %河池: 0.1 %河池: 0.1 %泰安: 0.1 %泰安: 0.1 %济南: 0.4 %济南: 0.4 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.0 %苏州: 0.0 %荷兰北布拉班特省: 0.1 %荷兰北布拉班特省: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 35.8 %西宁: 35.8 %西安: 1.0 %西安: 1.0 %西雅图: 0.0 %西雅图: 0.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %车士活: 0.0 %车士活: 0.0 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.0 %鞍山: 0.0 %韶关: 0.0 %韶关: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他CanadaChinaIndiaNetherlandsTaiwan, ChinaXX[]上海上海市东莞东营丹东伊利诺伊州佛山保定兰辛凤凰城包头北京北京市北海南京南宁南通印度古吉拉特台州合肥呼和浩特咸宁哈尔滨哥伦布大庆大连天津宁波安康宿迁常州常德广元广州库比蒂诺开封张家口张家口市徐州德黑兰成都扬州新乡无锡日照昆明杭州梅州武汉永州沈阳河池泰安济南淮南淮安深圳温州渭南湖州湘潭漯河潍坊烟台玉林盐城石家庄石家庄市纽约芒廷维尤芝加哥苏州荷兰北布拉班特省莫斯科葫芦岛衡阳襄阳西宁西安西雅图贵港贵阳车士活运城连云港郑州重庆铁岭长春长沙长治阳泉青岛鞍山韶关香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2434) PDF downloads(843) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint