异常值个数未知下辅助数据自适应筛选方法

简涛 马颖亮 王海鹏 郭磊 魏广芬

简涛, 马颖亮, 王海鹏, 等. 异常值个数未知下辅助数据自适应筛选方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24135
引用本文: 简涛, 马颖亮, 王海鹏, 等. 异常值个数未知下辅助数据自适应筛选方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24135
JIAN Tao, MA Yingliang, WANG Haipeng, et al. Adaptive screening approach of training data with an unknown number of outliers[J]. Journal of Radars, in press. doi: 10.12000/JR24135
Citation: JIAN Tao, MA Yingliang, WANG Haipeng, et al. Adaptive screening approach of training data with an unknown number of outliers[J]. Journal of Radars, in press. doi: 10.12000/JR24135

异常值个数未知下辅助数据自适应筛选方法

doi: 10.12000/JR24135
基金项目: 国家自然科学基金(61971432),泰山学者工程专项经费资助(tsqn201909156),山东省高等学校青创科技支持计划(2019KJN031)
详细信息
    作者简介:

    简 涛,男,博士,教授,主要研究方向为雷达目标自适应检测

    马颖亮,男,硕士生,主要研究方向为雷达目标自适应检测

    王海鹏,男,博士,教授,主要研究方向为智能感知与融合、大数据技术与应用

    郭 磊,男,硕士,工程师,主要研究方向为雷达目标自适应检测

    魏广芬,女,博士,教授,主要研究方向为智能信息与信息处理技术及应用

    通讯作者:

    简涛 work_jt@163.com

  • 责任主编:高永婵 Corresponding Editor: GAO Yongchan
  • 中图分类号: TN958

Adaptive Screening Approach of Training Data with an Unknown Number of Outliers

Funds: The National Natural Science Foundation of China (61971432), Taishan Scholars Project Special Funding (tsqn201909156), Shandong Provincial Youth Innovation Science and Technology Support Program for Colleges and Universities (2019KJN031)
More Information
  • 摘要: 在雷达目标多通道自适应检测场景下,诸多非均匀背景因素易导致异常值干扰,使得辅助数据独立同分布条件难以满足,已有辅助数据筛选方法往往假定异常值个数已知,在个数未知的情况下面临较大性能损失。为此,该文研究了异常值个数未知情况下辅助数据自适应筛选方法。首先,在杂噪协方差矩阵已知条件下,建立了异常数据集合的最大似然估计,基于广义内积对辅助数据进行初步排序,将异常数据集合的最大似然估计过程简化为异常值个数估计。其次,利用快速最大似然方法进行未知协方差矩阵估计,提出了未知异常值个数下辅助数据自适应筛选方法。进一步地,为降低异常值对初步排序性能的不利干扰,基于归一化采样协方差矩阵设计了归一化广义内积形式,并结合迭代估计方式,对前述辅助数据自适应筛选流程进行改进。仿真结果表明,与广义内积相比,采用归一化广义内积可获得更高的筛选精度,采用较小迭代次数即可获得稳定的归一化信干比改善;与已有辅助数据筛选方法相比,该文所提方法在异常值个数未知条件下具有更好的筛选性能。

     

  • 图  1  RAC-NGIP与RAC-GIP方法${P_r}$和NSIR随t的变化曲线($N = 8,{\text{ }}R = 12,{\text{ }}m = 4,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$)

    Figure  1.  ${P_r}$ and NSIR versus t of the RAC-NGIP and RAC-GIP with $N = 8,{\text{ }}R = 12,{\text{ }}m = 4,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$

    图  2  不同自适应筛选方法${P_r}$和NSIR随R的变化曲线($N = 8,{\text{ }}m = 4,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$)

    Figure  2.  ${P_r}$ and NSIR versus t of different methods with $N = 8,{\text{ }}m = 4,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$

    图  3  不同自适应筛选方法${P_r}$和NSIR随N的变化曲线($R = 12,{\text{ }}m = 4,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$)

    Figure  3.  ${P_r}$ and NSIR versus N of different methods with $R = 12,{\text{ }}m = 4,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$

    图  4  不同自适应筛选方法${P_r}$和NSIR随m的变化曲线($N = 8,{\text{ }}R = 14,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$)

    Figure  4.  ${P_r}$ and NSIR versus m of different methods with $N = 8,{\text{ }}R = 14,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$

    图  5  当${m_0} < m$时,不同筛选方法${P_r}$和NSIR随R的变化曲线($N = 8,{\text{ }}m = 4,{\text{ }}{m_0} = 3,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$)

    Figure  5.  ${P_r}$ and NSIR versus R of different methods for ${m_0} < m$ with $N = 8,{\text{ }}m = 4,{\text{ }}{m_0} = 3,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$

    图  6  当${m_0} = m$时,不同筛选方法${P_r}$和NSIR随R的变化曲线($N = 8,{\text{ }}m = 4,{\text{ }}{m_0} = 4,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$)

    Figure  6.  ${P_r}$ and NSIR versus R of different methods for ${m_0} = m$ with $N = 8,{\text{ }}m = 4,{\text{ }}{m_0} = 4,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$

    图  7  当${m_0} > m$时,不同筛选方法${P_r}$和NSIR随R的变化曲线($N = 8,{\text{ }}m = 4,{\text{ }}{m_0} = 5,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$)

    Figure  7.  ${P_r}$ and NSIR versus R of different methods for ${m_0} > m$ with $N = 8,{\text{ }}m = 4,{\text{ }}{m_0} = 5,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$

    图  8  当${m_0} = m$时,不同筛选方法${P_r}$和NSIR随m的变化曲线($N = 8,{\text{ }}R = 14,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$)

    Figure  8.  ${P_r}$ and NSIR versus m of different methods for ${m_0} = m$ with $N = 8,{\text{ }}R = 14,{\text{ }}T = 2,{\text{ }}{\mathrm{CNR}} = 10\;{\mathrm{dB}},{\text{ }}{\mathrm{ONR}} = 20\;{\mathrm{dB}}$

    1  RAC-NGIP

    1.   RAC-NGIP

     输入:$N \times R$维辅助数据Z,最大迭代次数T
     输出:异常数据集合$ {\hat \varOmega _0} $
     1: $t = 1$
     2: $ \hat {\boldsymbol{M}}_{{\mathrm{N}}0}^{(1)} \leftarrow $式(19)
     3: FOR $i = 1:R$
     4:   $ \omega _i^{(t)} \leftarrow $式(20)
     5: END
     6: 对$ \omega _i^{(t)} $从大到小排序,提取索引序列$\{ (1),(2), \cdots ,(R)\} $
     7: FOR ${m_p} = 1:R$
     8:  $ {\hat \varOmega _p} = \{ (1),(2), \cdots ,({m_p})\} $
     9:  $ \varOmega - {\hat \varOmega _p} = \{ ({m_p} + 1), \cdots ,(R)\} $
     10: $ {\hat {\boldsymbol{S}}_{p1}} $, $ {\hat {\boldsymbol{S}}_{p2}} \leftarrow $式(8)
     11: $ {{\boldsymbol{M}}_{{\mathrm{S}}1}} $, $ {{\boldsymbol{M}}_{{\mathrm{S}}2}} \leftarrow $式(12)
     12: $ {\hat {\boldsymbol{M}}_{p1}} $, $ {\hat {\boldsymbol{M}}_{p2}} \leftarrow $式(14)
     13: $ f({\boldsymbol{Z}}\left| {{{\hat {\boldsymbol{M}}}_{p1}},{{\hat {\boldsymbol{M}}}_{p2}};{H_p}} \right.,{m_p}) \leftarrow $式(15)
     14: END
     15: $ {\hat m^{(t)}} \leftarrow $式(16)
     16: $ \hat \varOmega _0^{(t)} = \{ (1),(2), \cdots ,({\hat m^{(t)}})\} $
     17: $t \leftarrow t + 1$
     18: $ \hat {\boldsymbol{M}}_{{\mathrm{N}}0}^{(t)} \leftarrow $式(21)
     19: REPEAT 步骤3~18 until $t > T$
     20: $ {\hat \varOmega _0} = \hat \varOmega _0^{(T)} $
    下载: 导出CSV

    表  1  本文所提的辅助数据自适应筛选方法简要总结

    Table  1.   Brief summary of methods proposed in this paper

    方法 简要说明 计算复杂度
    AC-GIP 异常值个数未知的非迭代估计方法,采用GIP筛选处理对辅助数据进行初步排序 $ {O}\left( {{N^2}{R^2} + 3{N^3}R - 4{N^4}} \right) $
    AC-NGIP 异常值个数未知的非迭代估计方法,采用NGIP筛选处理对辅助数据进行初步排序 $ {O}\left( {{N^2}{R^2} + 3{N^3}R - 4{N^4}} \right) $
    RAC-GIP 异常值个数未知条件下,以AC-GIP为基础,对异常值集合进行迭代估计 $ {O}\left( {T{N^2}{R^2} + 3T{N^3}R - 4T{N^4}} \right) $
    RAC-NGIP 异常值个数未知条件下,以AC-NGIP为基础,对异常值集合进行迭代估计 $ {O}\left( {T{N^2}{R^2} + 3T{N^3}R - 4T{N^4}} \right) $
    下载: 导出CSV
  • [1] 王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201–207. doi: 10.3724/SP.J.1300.2014.13081.

    WANG Yongliang, LIU Weijian, XIE Wenchong, et al. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201–207. doi: 10.3724/SP.J.1300.2014.13081.
    [2] 李海, 刘新龙, 周盟, 等. 基于修正自适应匹配滤波器的机动目标检测方法[J]. 雷达学报, 2015, 4(5): 552–559. doi: 10.12000/JR15105.

    LI Hai, LIU Xinlong, ZHOU Meng, et al. Detection of maneuvering target based on modified AMF[J]. Journal of Radars, 2015, 4(5): 552–559. doi: 10.12000/JR15105.
    [3] DUAN Jia, WU Yifeng, DENG Xiaobo, et al. Robust clutter suppression in heterogeneous environments based on multi frames and similarities[J]. Multidimensional Systems and Signal Processing, 2022, 33(1): 167–180. doi: 10.1007/s11045-021-00792-x.
    [4] LU Shuping, YI Wei, LIU Weijian, et al. Data-dependent clustering-CFAR detector in heterogeneous environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 476–485. doi: 10.1109/TAES.2017.2740065.
    [5] 高永婵, 潘丽燕, 李亚超, 等. 空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法[J]. 雷达学报, 2022, 11(5): 765–777. doi: 10.12000/JR22013.

    GAO Yongchan, PAN Liyan, LI Yachao, et al. Multi-rank range-spread target detection method for space/time symmetric array radar under non-Gaussian clutter background[J]. Journal of Radars, 2022, 11(5): 765–777. doi: 10.12000/JR22013.
    [6] 简涛, 王哲昊, 王海鹏, 等. 基于损失加权修正的舰船目标HRRP小样本元学习识别方法[J]. 信号处理, 2022, 38(12): 2460–2468. doi: 10.16798/j.issn.1003-0530.2022.12.002.

    JIAN Tao, WANG Zhehao, WANG Haipeng, et al. Ship target HRRP meta-learning recognition with small samples based on loss weighted correction[J]. Journal of Signal Processing, 2022, 38(12): 2460–2468. doi: 10.16798/j.issn.1003-0530.2022.12.002.
    [7] ZHANG Xinying and WANG Tong. A novel training samples selection method for space-time adaptive processing[C]. The 4th International Conference on Electronic Engineering and Informatics, Guiyang, China, 2022: 1–4.
    [8] GUO Qiang, LIU Lichao, KALIUZHNYI M, et al. STAP training samples selection based on GIP and volume cross correlation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4028205. doi: 10.1109/LGRS.2022.3218670.
    [9] MELVIN W L, WICKS M C, and BROWN R D. Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms[C]. The 1996 IEEE National Radar Conference, Ann Arbor, USA, 1996: 130–135. doi: 10.1109/NRC.1996.510669.
    [10] MELVIN W L and WICKS M C. Improving practical space-time adaptive radar[C]. The 1997 IEEE National Radar Conference, Syracuse, USA, 1997: 48–53. doi: 10.1109/NRC.1997.588124.
    [11] GERLACH K. Outlier resistant adaptive matched filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 885–901. doi: 10.1109/TAES.2002.1039406.
    [12] CONTE E, DE MAIO A, FARINA A, et al. Design and analysis of a knowledge-aided radar detector for Doppler processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1058–1079. doi: 10.1109/TAES.2006.248200.
    [13] HAN Sudan, DE MAIO A, CAROTENUTO V, et al. Censoring outliers in radar data: An approximate ML approach and its analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 534–546. doi: 10.1109/TAES.2018.2852418.
    [14] KARBASI S M. Joint likelihood estimation and model order selection for outlier censoring[J]. IET Radar, Sonar & Navigation, 2021, 15(6): 561–573. doi: 10.1049/rsn2.12072.
    [15] STEINER M and GERLACH K. Fast converging adaptive processor or a structured covariance matrix[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1115–1126. doi: 10.1109/7.892662.
    [16] YANG Xiaopeng, LIU Yongxu, and LONG Teng. Robust non-homogeneity detection algorithm based on prolate spheroidal wave functions for space-time adaptive processing[J]. IET Radar, Sonar & Navigation, 2013, 7(1): 47–54. doi: 10.1049/iet-rsn.2011.0404.
    [17] CONTE E, LOPS M, and RICCI G. Adaptive detection schemes in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1058–1069. doi: 10.1109/7.722671.
    [18] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893.
    [19] LI Zhihui, LIU Hanwei, ZHANG Yongshun, et al. Robust nonhomogeneous training samples detection method for space-time adaptive processing radar using sparse-recovery with knowledge-aided[J]. Journal of Applied Remote Sensing, 2017, 11(4): 045013. doi: 10.1117/1.JRS.11.045013.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  31
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-04
  • 修回日期:  2024-08-17

目录

    /

    返回文章
    返回