-
摘要: 激光合成孔径雷达将合成孔径技术应用于激光频段,分辨率不受观测距离的限制,可实现远距离、超高分辨率成像。然而,受激光衍射极限限制,观测视场制约着激光合成孔径雷达对地观测实际应用。该文提出一种阵列激光合成孔径雷达技术体制,通过大功率阵列发射、阵列平衡探测接收、逐脉冲动态内定标实现了激光多路相干收发,成倍地扩大了成像视场。地面转台成像试验表明,成像分辨率优于3 cm(距离)×1 cm(方位),该项技术可为激光合成孔径雷达对地观测应用奠定基础。Abstract: By extending synthetic aperture technology from the microwave band to the laser wavelength, Synthetic Aperture Ladar (SAL) has long-distance imaging and extremely high spatial resolution independent of the target distance. Presently, the small field of view is the key constraint in SAL ground observation because of the laser diffraction limitation. In this paper, an array SAL technology is proposed. With high-power array transmission, array-balanced detection, and pulse-wise dynamic internal calibration, a multichannel coherent laser transceiver is realized. Meanwhile, the field of view has multiplied. The results of turntable experiments show that the imaging resolution is better than 3 cm (distance) × 1 cm (azimuth). This technology provides a scientific and technical approach to SAL with wider swath imaging in ground observation.
-
Key words:
- Array /
- Synthetic Aperture Ladar (SAL) /
- High resolution /
- Wide swath
-
表 1 点目标切片分析
Table 1. Slice analysis of point target
序号 距离向分辨率(cm) 距离向PSLR 方位向分辨率(cm) 方位向PSLR 点目标1 2.79 –13.35 0.68 –18.96 点目标2 2.70 –13.97 0.65 –11.39 点目标3 2.79 –14.55 0.63 –9.47 点目标4 2.88 –14.39 0.69 –5.21 点目标5 2.79 –12.98 0.81 –12.75 -
[1] LEWIS T S and HUTCHINS H S. A synthetic aperture at optical frequencies[J]. Proceedings of the IEEE, 1970, 58(4): 587–588. doi: 10.1109/PROC.1970.7698 [2] MARCUS S, COLELLA B D, and GREEN T J. Solid-state laser synthetic aperture radar[J]. Applied Optics, 1994, 33(6): 960–964. doi: 10.1364/AO.33.000960 [3] GREEN T J, MARCUS S, and COLELLA B D. Synthetic-aperture-radar imaging with a solid-state laser[J]. Applied Optics, 1995, 34(30): 6941–6949. doi: 10.1364/AO.34.006941 [4] BASHKANSKY M, LUCKE R L, FUNK E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 2002, 27(22): 1983–1985. doi: 10.1364/OL.27.001983 [5] BECK S M, BUCK J R, BUELL W F, et al. Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35): 7621–7629. doi: 10.1364/AO.44.007621 [6] KRAUSE B W, BUCK J, RYAN C, et al. Synthetic aperture Ladar flight demonstration[C]. Laser Science to Photonic Applications, Baltimore, USA, 2011: 1–2. [7] 郭亮. 合成孔径成像激光雷达实验与算法研究[D]. [博士论文], 西安电子科技大学, 2009: 43–62.GUO Liang. Study on experiment and algorithm of synthetic aperture imaging Lidar[D]. [Ph. D. dissertation], Xidian University, 2009: 43–62. [8] 刘立人, 周煜, 职亚楠, 等. 大口径合成孔径激光成像雷达演示样机及其实验室验证[J]. 光学学报, 2011, 31(9): 0900112. doi: 10.3788/AOS201131.0900112LIU Liren, ZHOU Yu, ZHI Ya’nan, et al. A large-aperture synthetic aperture imaging Ladar demonstrator and its verification in laboratory space[J]. Acta Optica Sinica, 2011, 31(9): 0900112. doi: 10.3788/AOS201131.0900112 [9] 吴谨, 杨兆省, 赵志龙, 等. 单程远场衍射合成孔径激光雷达成像实验室演示[J]. 红外与毫米波学报, 2013, 32(6): 514–518. doi: 10.3724/SP.J.1010.2013.00514WU Jin, YANG Zhaosheng, ZHAO Zhilong, et al. Synthetic aperture Ladar imaging with one-way far-field diffraction[J]. Journal of Infrared and Millimeter Waves, 2013, 32(6): 514–518. doi: 10.3724/SP.J.1010.2013.00514 [10] LI Guangzuo, WANG Ning, WANG Ran, et al. Imaging method for airborne SAL data[J]. Electronics Letters, 2017, 53(5): 351–353. doi: 10.1049/el.2016.4205 [11] 张珂殊, 潘洁, 王然, 等. 大幅宽激光合成孔径雷达成像技术研究[J]. 雷达学报, 2017, 6(1): 1–10. doi: 10.12000/JR16152ZHANG Keshu, PAN Jie, WANG Ran, et al. Study of wide swath synthetic aperture Ladar imaging techology[J]. Journal of Radars, 2017, 6(1): 1–10. doi: 10.12000/JR16152 [12] 张波, 周煜, 孙建锋, 等. 多通道宽幅度合成孔径激光成像雷达收发装置优化研究[J]. 光学学报, 2018, 38(5): 0528002. doi: 10.3788/AOS201838.0528002ZHANG Bo, ZHOU Yu, SUN Jianfeng, et al. Optimization research on multi-channel wide-swath synthetic aperture imaging Ladar transceiver system[J]. Acta Optica Sinica, 2018, 38(5): 0528002. doi: 10.3788/AOS201838.0528002 [13] 李道京, 周凯, 崔岸婧, 等. 多通道逆合成孔径激光雷达成像探测技术和实验研究[J]. 激光与光电子学进展, 2021, 58(18): 1811017. doi: 10.3788/LOP202158.1811017LI Daojing, ZHOU Kai, CUI Anjing, et al. Multi-channel inverse synthetic aperture Ladar imaging detection technology and experimental research[J]. Laser &Optoelectronics Progress, 2021, 58(18): 1811017. doi: 10.3788/LOP202158.1811017 [14] META A, HOOGEBOOM P, and LIGTHART L. Range non-linearities correction in FMCW SAR[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 403–406. 期刊类型引用(30)
1. 连静,杨勇,谢晓霞,王雪松. 大掠射角对海雷达导引头实测回波特性分析. 系统工程与电子技术. 2024(05): 1535-1543 . 百度学术
2. 韩喆璇,于恒力,王中训,刘宁波,孙艳丽. 基于相对多普勒峰高特征的OS-CFAR改进方法. 海军航空大学学报. 2024(04): 475-484 . 百度学术
3. 关键,姜星宇,刘宁波,丁昊,黄勇. 海杂波背景下的双极化最大特征值目标检测. 系统工程与电子技术. 2024(11): 3715-3725 . 百度学术
4. 张梦雨,王中训,李飞,刘宁波,董云龙. CNN海况等级分类方法的性能. 烟台大学学报(自然科学与工程版). 2023(02): 196-203 . 百度学术
5. 关键,刘宁波,王国庆,丁昊,董云龙,黄勇,田凯祥,张梦雨. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集. 雷达学报. 2023(02): 456-469 . 本站查看
6. 许述文,焦银萍,白晓惠,蒋俊正. 基于频域多通道图特征感知的海面小目标检测. 电子与信息学报. 2023(05): 1567-1574 . 百度学术
7. 赵迪,行鸿彦,王海峰,阎妍. 基于SAE-GA-XGBoost算法的海面小目标检测. 雷达科学与技术. 2023(01): 88-96 . 百度学术
8. 关键,姜星宇,刘宁波,黄勇,丁昊. 海杂波中目标分数域谱范数特征检测方法. 电子与信息学报. 2023(06): 2162-2170 . 百度学术
9. 刘照标,张友益,陈翰. 舰载近程搜索雷达时空二维海杂波建模与仿真. 舰船电子对抗. 2023(03): 70-74 . 百度学术
10. 丁昊,朱晨光,刘宁波,王国庆. 高海况条件下海面漂浮小目标特征提取与分析. 海军航空大学学报. 2023(04): 301-312 . 百度学术
11. 李宏武,王燊燊,徐秦,祁华峰. 海杂波对机载雷达探测影响研究. 现代电子技术. 2023(20): 101-106 . 百度学术
12. 杜延磊,杨晓峰,汪胜,殷君君,杨会章,杨健. 海面雷达散射及其杂波幅度统计特性的空间遍历性数值仿真研究. 系统工程与电子技术. 2023(12): 3806-3818 . 百度学术
13. 关键,伍僖杰,丁昊,刘宁波,董云龙,张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法. 电子与信息学报. 2022(07): 2449-2460 . 百度学术
14. 董云龙,刘洋,刘宁波,丁昊,关键. 基于雷达方程修正的目标探测距离评估方法. 信号处理. 2022(10): 2102-2113 . 百度学术
15. 刘宁波,丁昊,黄勇,董云龙,王国庆,董凯. X波段雷达对海探测试验与数据获取年度进展. 雷达学报. 2021(01): 173-182 . 本站查看
16. 丁斌,夏雪,梁雪峰. 基于深度生成对抗网络的海杂波数据增强方法. 电子与信息学报. 2021(07): 1985-1991 . 百度学术
17. 时艳玲,刘子鹏,贾邦玲. 样本不平衡下的海杂波弱目标分类研究. 信号处理. 2021(09): 1781-1789 . 百度学术
18. 伍僖杰,丁昊,刘宁波,关键. 基于时频脊-Radon变换的海面小目标检测方法. 信号处理. 2021(09): 1599-1611 . 百度学术
19. 刘宁波,姜星宇,丁昊,关键. 雷达大擦地角海杂波特性与目标检测研究综述. 电子与信息学报. 2021(10): 2771-2780 . 百度学术
20. 杜延磊,高帆,刘涛,杨健. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析. 系统工程与电子技术. 2021(10): 2742-2755 . 百度学术
21. 时艳玲,姚婷婷,郭亚星. 基于图连通密度的海面漂浮小目标检测. 电子与信息学报. 2021(11): 3185-3192 . 百度学术
22. 刘用功,尹勇. 目标船感知技术综述. 广州航海学院学报. 2021(04): 1-4+30 . 百度学术
23. 陈世超,高鹤婷,罗丰. 基于极化联合特征的海面目标检测方法. 雷达学报. 2020(04): 664-673 . 本站查看
24. 关键. 雷达海上目标特性综述. 雷达学报. 2020(04): 674-683 . 本站查看
25. 唐先慧,李东,粟嘉,程婉儒,任金芝,李秀琴. 基于AlexNet的自适应杂波智能抑制方法. 信号处理. 2020(12): 2032-2042 . 百度学术
26. 王超,孙芹东,张林,王文龙,张小川. 水下声学滑翔机海上目标探测试验与性能评估. 信号处理. 2020(12): 2043-2051 . 百度学术
27. 曹成会,张杰,张晰,孟俊敏,毛兴鹏. 低掠射微波雷达的海杂波多方位幅度特性分析. 信号处理. 2020(12): 2085-2098 . 百度学术
28. 刘宁波,董云龙,王国庆,丁昊,黄勇,关键,陈小龙,何友. X波段雷达对海探测试验与数据获取. 雷达学报. 2019(05): 656-667 . 本站查看
29. 于涵,水鹏朗,施赛楠,杨春娇. 广义Pareto分布海杂波模型参数的组合双分位点估计方法. 电子与信息学报. 2019(12): 2836-2843 . 百度学术
30. 王国庆,王朝铺,刘传辉,刘宁波,丁昊. 利用神经网络的海杂波幅度分布参数估计方法. 海军航空工程学院学报. 2019(06): 480-487 . 百度学术
其他类型引用(23)
-