雷达通信一体化:共用波形设计和性能边界

马丁友 刘祥 黄天耀 刘一民

马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化:共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146
引用本文: 马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化:共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146
MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146
Citation: MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146

雷达通信一体化:共用波形设计和性能边界

doi: 10.12000/JR21146
基金项目: 国家自然科学基金(61801258, 62171259)
详细信息
    作者简介:

    马丁友(1993–),男,博士,研究方向为雷达通信一体化的系统设计、信号处理

    刘 祥(1993–),男,博士研究生,研究方向为雷达通信一体化、雷达信号处理、MIMO技术

    黄天耀(1989–),男,助理研究员,研究方向为雷达信号处理、雷达通信一体化、压缩感知

    刘一民(1983–),男,副教授,研究方向为雷达系统、雷达抗干扰、雷达通信一体化系统、智能交通、智能感知、统计信号处理

    通讯作者:

    刘一民 yiminliu@tsinghua.edu.cn

  • 责任主编:杨瑞娟 Corresponding Editor: YANG Ruijuan
  • 中图分类号: TN929.5

Joint Radar and Communications: Shared Waveform Designs and Performance Bounds

Funds: The National Natural Science Foundation of China (61801258, 62171259)
More Information
    Corresponding author: LIU Yimin, yiminliu@tsinghua.edu.cn
  • 摘要: 很多军事和民用平台都同时具备雷达与通信功能。传统的分立式设计增加了系统的体积、功耗和成本,并降低了系统的电磁兼容性能。雷达通信一体化设计能够让雷达和通信共享硬件平台,从而克服上述缺点,受到了学术界和工业界的广泛关注。总体来看,雷达通信一体化可以通过资源分配和共用波形来实现。共用波形的方式具有更高的频谱效率和功率效率,并能够从根本上克服跨系统干扰,因此成为近年来的研究热点。该文首先对现有的雷达通信一体化共用波形设计进行综述,并将共用波形设计方法分为基于通信波形、基于雷达波形和基于联合设计3种类型。然后针对一般的一体化波形,该文对雷达通信一体化系统的性能边界的相关研究进行了综述,揭示了雷达和通信性能的折中。最后对该文内容进行了总结,并对一体化的未来研究方向进行了展望。

     

  • 图  1  雷达通信一体化系统模型和场景的图示

    Figure  1.  An illustration of the system model and the scenario of joint radar and communication systems

    图  2  文献[22]提出方案的雷达可恢复目标个数和通信速率与波形参数的关系

    Figure  2.  The number of targets that can be recovered by radar and the communication rate versus different waveform parameters in the scheme proposed in Ref. [22]

    图  3  多用户MIMO通信的信道容量和雷达的协方差误差${S}_{3}\left(\boldsymbol{R}\right)$的关系

    Figure  3.  The relationship between the channel capacity of multi-user MIMO and the bias of the radar covariance ${S}_{3}\left(\boldsymbol{R}\right)$

    图  4  多用户MIMO通信的信道容量和雷达目标角度估计的CRLB的关系

    Figure  4.  The relationship between the channel capacity of multi-user MIMO communication and the CRLB of the angle estimate of radar targets

    图  5  基于信息论的通信雷达一体化系统示意图

    Figure  5.  An illustration of the joint radar and communication system based on information theory

  • [1] IMT-2030(6G)推进组. 通信感知一体化技术研究报告[R]. IMT-2030(6G)推进组, 2021.

    IMT-2030(6G) Promotion Group. Research report of joint radar and communications technology[R]. IMT-2030(6G) Promotion Group, 2021.
    [2] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond[J]. arXiv: 2108.07165. http://arxiv.org/abs/2108.07165, 2021.
    [3] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [4] PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038
    [5] GAMEIRO A, CASTANHEIRA D, SANSON J, et al. Research challenges, trends and applications for future joint radar communications systems[J]. Wireless Personal Communications, 2018, 100(1): 81–96. doi: 10.1007/s11277-018-5614-8
    [6] ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329
    [7] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
    [8] MISHRA K V, SHANKAR M R, KOIVUNEN V, et al. Toward millimeter-wave joint radar communications: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2019, 36(5): 100–114. doi: 10.1109/MSP.2019.2913173
    [9] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Signaling strategies for dual-function radar communications: An overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 36–45. doi: 10.1109/MAES.2016.150225
    [10] TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485
    [11] Converged Collaborative Elements for RF Task Operations (CONCERTO)[R]. Defense Advanced Research Projects Agency, 2016.
    [12] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Bit constrained communication receivers in joint radar communications systems[C]. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 8243–8247.
    [13] ZHOU Zimu, WU Chenshu, YANG Zheng, et al. Sensorless sensing with WiFi[J]. Tsinghua Science and Technology, 2015, 20(1): 1–6. doi: 10.1109/TST.2015.7040509
    [14] HAN Liang and WU Ke. Radar and radio data fusion platform for future intelligent transportation system[C]. The 7th European Radar Conference, Paris, France, 2010: 65–68.
    [15] AYDOGDU C, KESKIN M F, GARCIA N, et al. RadChat: Spectrum sharing for automotive radar interference mitigation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 416–429. doi: 10.1109/TITS.2019.2959881
    [16] BICĂ M and KOIVUNEN V. Multicarrier radar-communications waveform design for RF convergence and coexistence[C]. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 7780–7784.
    [17] MA Dingyou, HUANG Tianyao, LIU Yimin, et al. A novel joint radar and communication system based on randomized partition of antenna array[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 3335–3339.
    [18] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408
    [19] REICHARDT L, STURM C, GRÜNHAUPT F, et al. Demonstrating the use of the IEEE 802.11P Car-to-Car communication standard for automotive radar[C]. 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012: 1576–1580.
    [20] KUMARI P, GONZALEZ-PRELCIC N, and HEATH R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, USA, 2015: 1–5.
    [21] KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
    [22] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. FRaC: FMCW-based joint radar-communications system via index modulation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1348–1364. doi: 10.1109/JSTSP.2021.3118219
    [23] HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. Multi-carrier agile phased array radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 5706–5721. doi: 10.1109/TSP.2020.3026186
    [24] MA Dingyou, HUANG Tianyao, SHLEZINGER N, et al. A DFRC system based on multi-carrier agile FMCW MIMO radar for vehicular applications[C]. 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020: 1–7.
    [25] HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394
    [26] MIZUI K, UCHIDA M, and NAKAGAWA M. Vehicle-to-vehicle communication and ranging system using spread spectrum technique (Proposal of Boomerang Transmission System)[C]. IEEE 43rd Vehicular Technology Conference, Secaucus, USA, 1993: 335–338.
    [27] TAKEDA M, TERADA T, and KOHNO R. Spread spectrum joint communication and ranging system using interference cancellation between a roadside and a vehicle[C]. VTC ’98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No. 98CH36151), Ottawa, Canada, 1998: 1935–1939.
    [28] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
    [29] MIZUTANI K and KOHNO R. Inter-vehicle spread spectrum communication and ranging system with concatenated EOE sequence[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2(4): 180–191. doi: 10.1109/6979.969363
    [30] HAN Liang and WU Ke. Joint wireless communication and radar sensing systems – state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450
    [31] HWANG T, YANG Chenyang, WU Gang, et al. OFDM and its wireless applications: A survey[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1673–1694. doi: 10.1109/TVT.2008.2004555
    [32] LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings - Radar, Sonar and Navigation, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn:20000734
    [33] STURM C, ZWICK T, and WIESBECK W. An OFDM system concept for joint radar and communications operations[C]. VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 2009: 1–5.
    [34] LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Design of integrated radar and communication system based on MIMO-OFDM waveform[J]. Journal of Systems Engineering and Electronics, 2017, 28(4): 669–680. doi: 10.21629/JSEE.2017.04.06
    [35] BRAUN M, STURM C, NIETHAMMER A, et al. Parametrization of joint OFDM-based radar and communication systems for vehicular applications[C]. 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 2009: 3020–3024.
    [36] LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [37] LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Robust OFDM integrated radar and communications waveform design based on information theory[J]. Signal Processing, 2019, 162: 317–329. doi: 10.1016/j.sigpro.2019.05.001
    [38] LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Transmit power adaptation for orthogonal frequency division multiplexing integrated radar and communication systems[J]. Journal of Applied Remote Sensing, 2017, 11(3): 035017. doi: 10.1117/1.JRS.11.035017
    [39] LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems[J]. Signal Processing, 2017, 141: 331–342. doi: 10.1016/j.sigpro.2017.06.026
    [40] LIU Yongjun, LIAO Guisheng and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016, pp. 1–4.
    [41] LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Joint range and angle estimation for an integrated system combining MIMO radar with OFDM communication[J]. Multidimensional Systems and Signal Processing, 2019, 30(2): 661–687. doi: 10.1007/s11045-018-0576-2
    [42] HAKOBYAN G and YANG Bin. A novel OFDM-MIMO radar with non-equidistant dynamic subcarrier interleaving[C]. 2016 European Radar Conference (EuRAD), London, UK, 2016: 45–48.
    [43] KNILL C, ROOS F, SCHWEIZER B, et al. Random multiplexing for an MIMO-OFDM radar with compressed sensing-based reconstruction[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 300–302. doi: 10.1109/LMWC.2019.2901405
    [44] LIU Yongjun, LIAO Guisheng, CHEN Yufeng, et al. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11659–11672. doi: 10.1109/TVT.2020.3016470
    [45] LELLOUCH G, MISHRA A K, and INGGS M. Stepped OFDM radar technique to resolve range and doppler simultaneously[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 937–950. doi: 10.1109/TAES.2014.130753
    [46] HUANG Tianyao and ZHAO Tong. Low PMEPR OFDM radar waveform design using the iterative least squares algorithm[J]. IEEE Signal Processing Letters, 2015, 22(11): 1975–1979. doi: 10.1109/LSP.2015.2449305
    [47] TURLAPATY A, JIN Yuanwei, and XU Yang. Range and velocity estimation of radar targets by weighted OFDM modulation[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 1358–1362.
    [48] MUNS G R, MISHRA K V, GUERRA C B, et al. Beam alignment and tracking for autonomous vehicular communication using IEEE 802.11ad-based radar[C]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 2019: 535–540.
    [49] GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic automotive radar using the IEEE 802.11ad standard[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1196–1200.
    [50] KUMARI P, HEATH R W, and VOROBYOV S A. Virtual pulse design for IEEE 802. 11AD-based joint communication-radar[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 3315–3319.
    [51] LIU Zhipeng, CHEN Xingbo, WANG Xiaomo, et al. Communication analysis of integrated waveform based on LFM and MSK[C]. IET International Radar Conference 2015, Hangzhou, China, 2015.
    [52] ZHANG Yu, LI Qingyu, HUANG Ling, et al. A modified waveform design for radar-communication integration based on LFM-CPM[C]. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–5.
    [53] SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1498–1503.
    [54] ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. IEEE MTT-S International Microwave Symposium Digest, 2003, Philadelphia, USA, 2003: 611–614.
    [55] SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343
    [56] LIU Xiang, COHEN D, HUANG Tianyao, et al. Unambiguous delay-Doppler recovery from random phase coded pulses[J]. IEEE Transactions on Signal Processing, 2021, 69: 4991–5004. doi: 10.1109/TSP.2021.3105921
    [57] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
    [58] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Non-coherent PSK-based dual-function radar-communication systems[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6.
    [59] BASAR E, WEN Miaowen, MESLEH R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693–16746. doi: 10.1109/ACCESS.2017.2737528
    [60] WANG Jintao, JIA Shuyun, and SONG Jian. Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme[J]. IEEE Transactions on Wireless Communications, 2012, 11(4): 1605–1615. doi: 10.1109/TWC.2012.030512.111635
    [61] BAŞAR E, AYGÖLÜ Ü, PANAYIRCI E, et al. Orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5536–5549. doi: 10.1109/TSP.2013.2279771
    [62] BOUDAHER E, HASSANIEN A, ABOUTANIOS E, et al. Towards a dual-function MIMO radar-communication system[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016.
    [63] WANG Xiangrong, HASSANIEN A, and AMIN M G. Dual-function MIMO radar communications system design via sparse array optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1213–1226. doi: 10.1109/TAES.2018.2866038
    [64] WANG Xiangrong and XU Jing. Co-design of joint radar and communications systems utilizing frequency hopping code diversity[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019.
    [65] HU Chenxi, LIU Yimin, MENG Huadong, et al. Randomized switched antenna array FMCW radar for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3624–3641. doi: 10.1109/TVT.2014.2308895
    [66] LIU Yimin, RUAN Hang, WANG Lei, et al. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 295–308. doi: 10.1109/JSTSP.2016.2627183
    [67] HUANG Tianyao, LIU Yimin, XU Xingyu, et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6228–6240. doi: 10.1109/TSP.2018.2876301
    [68] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739
    [69] MCCORMICK P M, BLUNT S D, and METCALF J G. Simultaneous radar and communications emissions from a common aperture, Part I: Theory[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1685–1690.
    [70] LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045
    [71] LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-Rao bound optimization for joint radar-communication design[J]. arXiv: 2101.12530. http://arxiv.org/abs/2101.12530, 2021.
    [72] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
    [73] LIU Xiang, HUANG Tianyao, and LIU Yimin. Transmit design for joint MIMO radar and multiuser communications with transmit covariance constraint[J]. arXiv: 2109.00779. http://arxiv.org/abs/2109.00779, 2021.
    [74] WEINER I. High-SNR channel capacity for communication over radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1261–1268. doi: 10.1109/TAES.2018.2884858
    [75] LIU Xiang, HUANG Tianyao, LIU Yimin, et al. Achievable sum-rate capacity optimization for joint MIMO multiuser communications and radar[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2021: 466–470.
    [76] LI Jian, XU Luzhou, STOICA P, et al. Range compression and waveform optimization for MIMO radar: A Cramér-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218–232. doi: 10.1109/TSP.2007.901653
    [77] STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398
    [78] FUHRMANN D R and SAN ANTONIO G. Transmit beamforming for MIMO radar systems using signal cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 171–186. doi: 10.1109/TAES.2008.4516997
    [79] KOBAYASHI M, CAIRE G, and KRAMER G. Joint state sensing and communication: Optimal tradeoff for a memoryless case[C]. 2018 IEEE International Symposium on Information Theory (ISIT), Vail, USA, 2018: 111–115.
    [80] KOBAYASHI M, HAMAD H, KRAMER G, et al. Joint state sensing and communication over memoryless multiple access channels[C]. 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019: 270–274.
  • 加载中
图(5)
计量
  • 文章访问数:  3300
  • HTML全文浏览量:  2022
  • PDF下载量:  647
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-07
  • 修回日期:  2022-01-07
  • 网络出版日期:  2022-03-03
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回