一种基于误差反向传播优化的多通道SAR相位误差估计方法

崔磊 仇晓兰 郭嘉逸 温雪娇 杨俊莹 付琨

崔磊, 仇晓兰, 郭嘉逸, 等. 一种基于误差反向传播优化的多通道SAR相位误差估计方法[J]. 雷达学报, 2020, 9(5): 878–885. doi: 10.12000/JR20096
引用本文: 崔磊, 仇晓兰, 郭嘉逸, 等. 一种基于误差反向传播优化的多通道SAR相位误差估计方法[J]. 雷达学报, 2020, 9(5): 878–885. doi: 10.12000/JR20096
CUI Lei, QIU Xiaolan, GUO Jiayi, et al. Multi-channel phase error estimation method based on an error backpropagation algorithm for a multichannel SAR[J]. Journal of Radars, 2020, 9(5): 878–885. doi: 10.12000/JR20096
Citation: CUI Lei, QIU Xiaolan, GUO Jiayi, et al. Multi-channel phase error estimation method based on an error backpropagation algorithm for a multichannel SAR[J]. Journal of Radars, 2020, 9(5): 878–885. doi: 10.12000/JR20096

一种基于误差反向传播优化的多通道SAR相位误差估计方法

doi: 10.12000/JR20096
基金项目: 国家自然科学基金(61991420, 61991421)
详细信息
    作者简介:

    崔 磊(1989–),男,甘肃天水人,2016年在北京理工大学信息与电子学院获得硕士学位,中国科学院电子学研究所苏州研究院助理研究员。主要研究领域为SAR数据预处理。E-mail: cuilei1167@163.com

    仇晓兰(1982–),女,中国科学院空天信息创新研究院研究员,博士生导师,主要研究领域为SAR成像处理、SAR图像理解,IEEE高级会员、IEEE地球科学与遥感快报副主编、雷达学报青年编委。E-mail: xlqiu@mail.ie.ac.cn

    通讯作者:

    崔磊 cuilei1167@163.com

    仇晓兰 xlqiu@mail.ie.ac.cn

  • 责任主编:陈杰 Corresponding Editor: CHEN Jie
  • 中图分类号: TN957.52

Multi-channel Phase Error Estimation Method Based on an Error Backpropagation Algorithm for a Multichannel SAR

Funds: The National Natural Science Foundation of China (61991420, 61991421)
More Information
  • 摘要: 方位向多通道合成孔径雷达(SAR)可实现高分辨率宽测绘带成像,准确估计通道间相位误差是保障成像质量的关键。该文提出了基于误差反向传播训练优化的通道相位误差估计方法,该方法根据多通道SAR回波生成的物理过程,构建含有通道间相位误差待估计参数的观测矩阵,通过初始化的通道误差和初始化的目标散射系数参数生成初始化的SAR回波,并计算该回波与多通道SAR实测回波之间的误差,通过深度学习中常用的误差反向传播的方法,不断训练优化上述参数,最终获得通道间相位误差的估计值,同时也得到了对稀疏目标散射系数的估计。该方法基于误差反向传播方法,并将该方法与通道误差的形成原理相结合,在稀疏假设下同时完成了相位估计和成像,为多通道SAR误差估计提供了一种全新的思路。多通道SAR仿真数据验证了该文算法的有效性。

     

  • 图  1  方位多通道SAR系统对地观测成像构型示意图

    Figure  1.  Ground observation imaging configuration of azimuth multi-channel SAR system

    图  2  基于反向传播优化的多通道SAR相位误差估计算法流程图

    Figure  2.  Flow chart of channel phase error estimation method based on backpropagation algorithm for multichannel SAR

    图  3  场景目标示意图

    Figure  3.  Scene target diagram

    图  4  回波抽取示意图

    Figure  4.  Schematic diagram of echo data extraction

    图  5  无噪声估计结果

    Figure  5.  Noiseless estimation results

    图  6  估计结果(SNR=0 dB)

    Figure  6.  Estimation results (SNR=0 dB)

    图  7  估计结果(SNR=–5 dB)

    Figure  7.  Estimation results (SNR=–5 dB)

    表  1  仿真实验系统参数

    Table  1.   Parameters of simulation experiment system

    参数取值
    通道数4
    雷达载频(GHz)5.35
    信号带宽(MHz)210.00
    脉冲重复频率(Hz)335.10
    方位向波束宽度(°)5.14
    雷达高度(m)4950.00
    雷达距场景中心的距离(m)7000.00
    雷达方位向等效速度(m/s)123.00
    场景方位向宽度(m)20.00
    场景地距向宽度(m)20.00
    距离采样个数4096
    方位回波个数3166
    下载: 导出CSV

    表  2  通道间相位误差估计结果(°)

    Table  2.   Estimation results of channel phase error (°)

    相位误差通道1/2相位误差通道2/3相位误差通道3/4相位误差
    实际相位偏差–9.826.44–2.34
    无噪估计–9.816.44–2.34
    SNR=0 dB估计–9.876.46–2.33
    SNR=–5 dB估计–9.356.30–2.76
    下载: 导出CSV
  • [1] FREEMAN A, JOHNSON W T K, HUNEYCUTT B, et al. The “Myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324. doi: 10.1109/36.823926
    [2] MOREIRA J, SCHWABISCH M, FORNARO G, et al. X-SAR interferometry: First results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 950–956. doi: 10.1109/36.406681
    [3] JIN Tingting, QIU Xiaolan, HU Donghui, et al. Unambiguous imaging of static scenes and moving targets with the first Chinese Dual-Channel spaceborne SAR sensor[J]. Sensors, 2017, 17(8): 1709. doi: 10.3390/s17081709
    [4] 刘艳阳, 李真芳, 杨桃丽, 等. 一种单星方位多通道高分辨率宽测绘带SAR系统通道相位偏差时域估计新方法[J]. 电子与信息学报, 2012, 34(12): 2913–2919. doi: 10.3724/SP.J.1146.2012.00562

    LIU Yanyang, LI Zhenfang, YANG Taoli, et al. A novel channel phase bias estimation method for spaceborne along-track multi-channel HRWS SAR in time-domain[J]. Journal of Electronics &Information Technology, 2012, 34(12): 2913–2919. doi: 10.3724/SP.J.1146.2012.00562
    [5] LI Zhenfang, BAO Zheng, WANG Hongyang, et al. Performance improvement for constellation SAR using signal processing techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 436–452. doi: 10.1109/TAES.2006.1642562
    [6] 张磊, 全英汇, 邢孟道, 等. 一种子空间投影的高分辨宽测绘带SAR成像通道均衡方法[J]. 电子与信息学报, 2010, 32(1): 1–6. doi: doi:10.3724/SP.J.1146.2008.01821

    ZHANG Lei, QUN Yinghui, XING Mengdao, et al. An SSP based channel calibration for high-resolution and wide-swath sar imagery[J]. Journal of Electronics &Information Technology, 2010, 32(1): 1–6. doi: doi:10.3724/SP.J.1146.2008.01821
    [7] 杨桃丽, 李真, 刘艳阳, 等. 两种星载高分辨宽测绘带SAR系统通道相位误差估计方法[J]. 电子学报, 2013, 41(5): 931–935. doi: 10.3969/j.issn.0372-2112.2013.05.016

    YANG Taoli, LI Zhen, LIU Yanyang, et al. Two channel phase error estimation methods for spaceborne HRWS SAR system[J]. Acta Electronica Sinica, 2013, 41(5): 931–935. doi: 10.3969/j.issn.0372-2112.2013.05.016
    [8] LIU Yanyang, LI Zhenfang, YANG Taoli, et al. An adaptively weighted least square estimation method of channel mismatches in phase for multichannel SAR systems in azimuth[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 439–443. doi: 10.1109/LGRS.2013.2264771
    [9] JIN Tingting, QIU Xiaolan, and HU Donghui. Estimation accuracy and Cramér–Rao Lower bounds for errors in multichannel HRWS SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1772–1776. doi: 10.1109/LGRS.2016.2608386
    [10] ZHANG L, XING M D, QIU C W, et al. Adaptive two-step calibration for high resolution and wide-swath SAR imaging[J]. IET Radar, Sonar & Navigation, 2010, 4(4): 548–559.
    [11] GEBERT N and KRIEGER G. Azimuth phase center adaptation on transmit for high-resolution wide-swath SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 782–786. doi: 10.1109/LGRS.2009.2025245
    [12] 王志斌, 刘艳阳, 李真芳, 等. 基于多普勒谱优化的HRWS SAR系统通道相位偏差估计算法[J]. 电子与信息学报, 2016, 38(12): 3026–3033. doi: 10.11999/JEIT161038

    WANG Zhibin, LIU Yanyang, LI Zhenfang, et al. Phase bias estimation algorithm for HRWS SAR system in azimuth based on Doppler spectrum optimization[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3026–3033. doi: 10.11999/JEIT161038
    [13] 束宇翔. 分布式卫星多相位中心SAR-GMTI技术研究[D]. [博士论文], 西安电子科技大学, 2014.

    SHU Yuxiang. Research on techniques of SAR-GMTI for distributed satellite SAR systems with multiple phase centers[D]. [Ph. D. dissertation], Xidian University, 2014.
    [14] JANOTH J, JOCHUM M, PETRAT L, et al. High resolution wide swath–the next generation X-band mission[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3535–3537.
    [15] HAWKES M, NEHORAI A, STOICA P. Performance breakdown of subspace-based methods: Prediction and cure[C]. 2001 IEEE International Conference on Acoustics, Speech, and Signal. Salt Lake City, USA, 2001.
    [16] SHANG Mingyang, QIU Xiaolan, HAN Bing, et al. Channel imbalances and along-track baseline estimation for the GF-3 azimuth multichannel mode[J]. Remote Sensing, 2019, 11(11): 1297. doi: 10.3390/rs11111297
    [17] ZHANG Linjian, GAO Yesheng, and LIU Xingzhao. Robust channel phase error calibration algorithm for multichannel high-resolution and wide-swath SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 649–653. doi: 10.1109/LGRS.2017.2668390
    [18] YANG Taoli, LI Zhenfang, LIU Yanyang, et al. Channel error estimation methods for multi-channel HRWS SAR systems[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013.
    [19] DE ALMEIDA F Q, YOUNIS M, KRIEGER G, et al. An analytical error model for Spaceborne SAR multichannel azimuth reconstruction[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6): 853–857. doi: 10.1109/LGRS.2018.2811786
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1605
  • HTML全文浏览量:  502
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-09-04
  • 网络出版日期:  2020-10-28

目录

    /

    返回文章
    返回