光载一机多天线远程GNSS差分监测系统

刘璞宇 邹喜华 李阳 闫连山 潘炜

刘璞宇, 邹喜华, 李阳, 等. 光载一机多天线远程GNSS差分监测系统[J]. 雷达学报, 2019, 8(2): 197–204. doi: 10.12000/JR19015
引用本文: 刘璞宇, 邹喜华, 李阳, 等. 光载一机多天线远程GNSS差分监测系统[J]. 雷达学报, 2019, 8(2): 197–204. doi: 10.12000/JR19015
LIU Puyu, ZOU Xihua, LI Yang, et al. Multi-antenna remote differential monitoring system based on a single GNSS-over-fiber architecture[J]. Journal of Radars, 2019, 8(2): 197–204. doi: 10.12000/JR19015
Citation: LIU Puyu, ZOU Xihua, LI Yang, et al. Multi-antenna remote differential monitoring system based on a single GNSS-over-fiber architecture[J]. Journal of Radars, 2019, 8(2): 197–204. doi: 10.12000/JR19015

光载一机多天线远程GNSS差分监测系统

doi: 10.12000/JR19015
基金项目: 国家863课题(2015AA016903),国家自然科学基金(61775185)
详细信息
    作者简介:

    刘璞宇(1993–),男,四川自贡人,西南交通大学信息光子与通信研究中心硕士生,研究方向为微波光子学。E-mail: liupuyu6@163.com

    邹喜华(1981–),男,湖南衡阳人,西南交通大学信息科学与技术学院暨国家级国际科技合作基地教授,博士生导师,研究方向为微波光子学、光通信与信号处理。E-mail: zouxihua@swjtu.edu.cn

    通讯作者:

    邹喜华  zouxihua@swjtu.edu.cn

  • 中图分类号: TN29

Multi-antenna Remote Differential Monitoring System Based on a Single GNSS-over-fiber Architecture

Funds: The National High-tech R&D Program of China (863 Program) (2015AA016903), The National Natural Science Foundation of China (61775185)
More Information
  • 摘要: 该文设计了一种光载一机多天线远程全球导航卫星系统(GNSS)差分监测系统。该系统利用微波光子链路远程采集多个远端天线接收的GNSS信号,并传输回本地端;然后在本地端借助高速光开关,以时分模式依次建立各远端信号与参考基准信号的载波相位双差模型方程,处理后实时获得高定位精度。实验中布设了10 km微波光子链路,3个远程监测点在E, N, U方向定位精度都达到毫米量级、实时响应时间低于10 ms。与传统一机单天线方案相比,该光载一机多天线GNSS差分监测系统在不降低定位精度的前提下,显著提升了监测/覆盖范围、实时监测/响应时间,以及大规模监测的性价比。因此,该系统在大型土建工程、自然环境大规模监测具有重要应用价值。

     

  • 图  1  双差差分示意图

    Figure  1.  Illustration of double difference

    图  2  光载一机多天线GNSS监测系统架构

    Figure  2.  Block diagram of the designed multi-antenna GNSS-over-fiber system

    图  3  光载一机多天线监测实验

    Figure  3.  Experiment for the designed multi-antenna system

    图  4  监测点1的基线长度和CNR

    Figure  4.  Baseline length and CNR obtained from the monitoring point 1

    图  5  监测点2的基线长度和CNR

    Figure  5.  Baseline length and CNR obtained from monitoring point 2

    图  6  监测点3的基线长度和CNR

    Figure  6.  Baseline length and CNR obtained from the monitoring point 3

    图  7  一机多天线下测量的基线长度和CNR (10 min间隔)

    Figure  7.  Baseline length result and SNR of multi-antenna (Interval of 10 min)

    图  8  一机多天线下测量的基线长度和CNR (5 min间隔)

    Figure  8.  Baseline lengths and CNR measured by the multi-antenna over fiber system (Interval of 5 min)

    表  1  监测点1, 2, 3的E, N, U方向的平均值和标准差(Ⅰ:一机单天线GNSS系统. Ⅱ:光载一机多天线GNSS系统)

    Table  1.   Mean values and standard deviations in E, N and U directions of monitoring point 1, 2, 3 (Ⅰ: One-antenna GNSS system. Ⅱ: Multi-antenna GNSS system)

    监测点E方向N方向U方向基线长度
    1均值(m)42.18142.18114.13414.134–0.003–0.00644.48744.487
    标准差(mm)1.31.61.72.43.92.51.31.3
    2均值(m)58.27158.27210.96110.9620.0060.00859.29459.294
    标准差(mm)1.41.21.72.13.73.51.31.2
    3均值(m)27.80827.8090.2830.2830.0420.04327.81027.810
    标准差(mm)1.61.82.42.23.72.51.61.8
    下载: 导出CSV
  • [1] 谢钢. 全球导航卫星系统原理: GPS、格洛纳斯和伽利略系统[M]. 北京: 电子工业出版社, 2013.

    XIE Gang. Principles of GNSS: GPS, GLONASS, and Galileo[M]. Beijing: Publishing House of Electronics Industry, 2013.
    [2] 姚连璧, 姚平, 王人鹏, 等. 南浦大桥形变GPS动态监测试验及结果分析[J]. 同济大学学报(自然科学版), 2008, 36(12): 1633–1636, 1664. doi: 10.3321/j.issn:0253-374X.2008.12.007

    YAO Lianbi, YAO Ping, WANG Renpeng, et al. GPS-based dynamic monitoring and analysis of Nanpu Bridge deformation[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1633–1636, 1664. doi: 10.3321/j.issn:0253-374X.2008.12.007
    [3] 刘根友, 薛怀平, 郝晓光, 等. 三峡库区秭归GPS滑坡监测网数据分析[J]. 大地测量与地球动力学, 2009, 29(3): 70–73. doi: 10.3969/j.issn.1671-5942.2009.03.013

    LIU Genyou, XUE Huaiping, HAO Xiaoguang, et al. Data analysis of GPS slide monitoring network in Zigui zone of Three Gorges reservoir area[J]. Journal of Geodesy and Geodynamics, 2009, 29(3): 70–73. doi: 10.3969/j.issn.1671-5942.2009.03.013
    [4] 姜卫平, 刘鸿飞, 刘万科, 等. 西龙池上水库GPS变形监测系统研究及实现[J]. 武汉大学学报(信息科学版), 2012, 37(8): 949–952.

    JIANG Weiping, LIU Hongfei, LIU Wanke, et al. CORS development for Xilongchi dam deformation monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 949–952.
    [5] 彭伟, 徐俊臣, 杜玉杰, 等. 基于北斗系统的海洋环境监测数据传输系统设计[J]. 海洋技术, 2009, 28(3): 13–15. doi: 10.3969/j.issn.1003-2029.2009.03.004

    PENG Wei, XU Junchen, DU Yujie, et al. Design of marine monitoring data transmitting system based on Beidou satellites system[J]. Ocean Technology, 2009, 28(3): 13–15. doi: 10.3969/j.issn.1003-2029.2009.03.004
    [6] 丁盼, 席瑞杰, 肖玉钢. 北斗卫星导航系统用于东北地区高精度变形监测性能分析[J]. 测绘通报, 2016(4): 33–37. doi: 10.13474/j.cnki.11-2246.2016.0116

    DING Pan, XI Ruijie, and XIAO Yugang. Performance analysis of high-precision deformation monitoring using Beidou navigation satellite system in Northeast China Region[J]. Bulletin of Surveying and Mapping, 2016(4): 33–37. doi: 10.13474/j.cnki.11-2246.2016.0116
    [7] 王利, 张勤, 范丽红, 等. 北斗/GPS融合静态相对定位用于高精度地面沉降监测的试验与结果分析[J]. 工程地质学报, 2015, 23(1): 119–125. doi: 10.13544/j.cnki.jeg.2015.01.017

    WANG Li, ZHANG Qin, FAN Lihong, et al. Experiment and results of high precision land subsidence monitoring using fused BDS/GPS data and static relative positioning[J]. Journal of Engineering Geology, 2015, 23(1): 119–125. doi: 10.13544/j.cnki.jeg.2015.01.017
    [8] XI Ruijie, CHEN Qusen, MENG Xiaolin, et al. Analysis of bridge deformations using real-time BDS measurements[C]. Proceedings of the 6th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 2017: 532–536. doi: 10.1109/ICCSNT.2017.8343756.
    [9] XIONG Chunbao, LU Huali, and ZHU Jinsong. Operational modal analysis of bridge structures with data from GNSS/accelerometer measurements[J]. Sensors, 2017, 17(3): 436. doi: 10.3390/s17030436
    [10] XI Ruijie, JIANG Weiping, MENG Xiaolin, et al. Bridge monitoring using BDS-RTK and GPS-RTK techniques[J]. Measurement, 2018, 12: 128–139. doi: 10.1016/j.measurement.2018.02.001
    [11] CHEN Yongqi, DING Xiaoli, HUANG Dingfa, et al. A multi-antenna GPS system for local area deformation monitoring[J]. Earth, Planets & Space, 2000, 52(10): 873–876. doi: 10.1186/BF03352298
    [12] 何秀凤, 贾东振, 刘志平. 基于GPS一机多天线方法的大型桥梁动态变形监测[J]. 河海大学学报(自然科学版), 2011, 39(1): 44–48. doi: 10.3876/j.issn.1000-1980.2011.01.010

    HE Xiufeng, JIA Dongzhen, and LIU Zhiping. Application of GPS multi-antenna method to dynamic deformation monitoring of long-span bridges[J]. Journal of Hohai University (Natural Sciences), 2011, 39(1): 44–48. doi: 10.3876/j.issn.1000-1980.2011.01.010
    [13] XIE Feng and LI Quanwen. Highway slope monitoring system based multi-antenna GPS network[J]. Advanced Materials Research, 2011, 261-263: 1151–1155. doi: 10.4028/www.scientific.net/AMR.261-263.1151
    [14] 刘彦杰, 付庆伟, 倪自强. GPS一机多天线滑坡监测系统的建立和应用[J]. 人民长江, 2013, 44(15): 52–53, 97. doi: 10.3969/j.issn.1001-4179.2013.15.014

    LIU Yanjie, FU Qingwei, and NI Ziqiang. Establishment and application of landslide monitoring system using GPS of single instrument with multi-antennas[J]. Yangtze River, 2013, 44(15): 52–53, 97. doi: 10.3969/j.issn.1001-4179.2013.15.014
    [15] 赵西安, 樊鹏昊, 樊英姿. GNSS一机多天线远程监测系统的研发[J]. 测绘通报, 2015(11): 4–7, 101. doi: 10.13474/j.cnki.11-2246.2015.0333

    ZHAO Xi’an, FAN Penghao, and FAN Yingzi. Developing the remote monitoring system based on GNSS multi-antenna[J]. Bulletin of Surveying and Mapping, 2015(11): 4–7, 101. doi: 10.13474/j.cnki.11-2246.2015.0333
    [16] ZHANG Yamei, ZHANG Fangzheng, and PAN Shilong. Optical single sideband polarization modulation for radio-over-fiber system and microwave photonic signal processing[J]. Photonics Research, 2014, 2(4): B80–B85. doi: 10.1364/PRJ.2.000B80
    [17] KARIM A M, STAFFORD S J, and BAKER R B. Global positioning system over fiber for buoyant cable antennas[J]. Johns Hopkins APL Technical Digest, 2012, 30(4): 309–320.
    [18] OLIVEIRA J M B, PESSOA L M, SALGADO H M, et al. Experimental evaluation of a differential GPS-over-fiber system for aircraft attitude determination[C]. Proceedings of 2013 IEEE Avionics, Fiber-Optics and Photonics Technology Conference (AVFOP), San Diego, CA, USA, 2013: 75–76. doi: 10.1109/AVFOP.2013.6661586.
    [19] PESSOA L M, OLIVEIRA J M B, COELHO D, et al. Transmission of differential GPS signals over fiber for aircraft attitude determination[C]. IEEE Avionics, Fiber-Optics and Photonics Digest CD, Cocoa Beach, FL, USA, 2012: 80–81. doi: 10.1109/AVFOP.2012.6344032.
    [20] 宋希希, 郭荣辉, 周永刚, 等. 光载GPS一机多天线系统的实验验证[J]. 数据采集与处理, 2014, 29(6): 957–963. doi: 10.3969/j.issn.1004-9037.2014.06.013

    SONG Xixi, GUO Ronghui, and ZHOU Yonggang, et al. Experimental demonstration of GPS-over-fiber multi-antenna receiver system[J]. Journal of Data Acquisition and Processing, 2014, 29(6): 957–963. doi: 10.3969/j.issn.1004-9037.2014.06.013
    [21] MACIAS-VALADEZ D, SANTERRE R, LAROCHELLE S, et al. Improving vertical GPS precision with a GPS-over-fiber architecture and real-time relative delay calibration[J]. GPS Solutions, 2012, 16(4): 449–462. doi: 10.1007/s10291-011-0244-6
    [22] CLIVATI C, CAPPELLINI G, LIVI L F, et al. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination[J]. Optics Express, 2016, 24(11): 11865–11875. doi: 10.1364/OE.24.011865
    [23] LI Hongnan, REN Liang, JIA Ziguang, et al. State-of-the-art in structural health monitoring of large and complex civil infrastructures[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 3–16. doi: 10.1007/s13349-015-0108-9
    [24] SMALL E E, ROESLER C J, and LARSON K M. Vegetation response to the 2012—2014 california drought from GPS and optical measurements[J]. Remote Sensing, 2018, 10(4): 630. doi: 10.3390/rs10040630
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2037
  • HTML全文浏览量:  603
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-29
  • 修回日期:  2019-03-15
  • 网络出版日期:  2019-04-01

目录

    /

    返回文章
    返回