基于空变运动误差分析的微波光子超高分辨SAR成像方法

陈潇翔 邢孟道

陈潇翔, 邢孟道. 基于空变运动误差分析的微波光子超高分辨SAR成像方法[J]. 雷达学报, 2019, 8(2): 205–214. doi: 10.12000/JR18121
引用本文: 陈潇翔, 邢孟道. 基于空变运动误差分析的微波光子超高分辨SAR成像方法[J]. 雷达学报, 2019, 8(2): 205–214. doi: 10.12000/JR18121
CHEN Xiaoxiang and XING Mengdao. An ultra-high-resolution microwave photonic-based SAR image method based on space-variant motion error analysis[J]. Journal of Radars, 2019, 8(2): 205–214. doi: 10.12000/JR18121
Citation: CHEN Xiaoxiang and XING Mengdao. An ultra-high-resolution microwave photonic-based SAR image method based on space-variant motion error analysis[J]. Journal of Radars, 2019, 8(2): 205–214. doi: 10.12000/JR18121

基于空变运动误差分析的微波光子超高分辨SAR成像方法

doi: 10.12000/JR18121
基金项目: 国家重点研发计划(2017YFC1405600), 国家自然科学基金创新群体基金(61621005)
详细信息
    作者简介:

    陈潇翔(1994–),男,浙江东阳人,博士生。研究方向为高分辨SAR成像,SAR运动补偿。E-mail: graceful1900@163.com

    邢孟道(1975–),男,浙江嵊州人,西安电子科技大学教授,博士生导师。主要研究方向为雷达成像。E-mail: xmd@xidian.edu.cn

    通讯作者:

    陈潇翔 graceful1900@163.com

  • 中图分类号: TN958

An Ultra-high-resolution Microwave Photonic-based SAR Image Method Based on Space-variant Motion Error Analysis

Funds: The State Key Research Development Program (2017YFC1405600), The Foundation for Innovative Research Groups of the National Natural Science Foundation of China (61621005)
More Information
  • 摘要: 针对运动误差空变对实现微波光子雷达超高分辨SAR成像的影响,该文提出了一种基于空变运动误差分析的超高分辨成像方法。首先通过解析求解获得中心波束平面补偿下的剩余空变误差表达式,提出了运动误差空变影响判定准则。接着针对微波光子SAR系统条件的不同判定结果,提出相应的成像流程。最后对所提判定准则与成像方法进行点仿真验证,并对录取的车载10 GHz微波光子超高分辨SAR实测数据进行分析与成像处理,实验结果表明所提方法的有效性。

     

  • 图  1  数据录取几何模型

    Figure  1.  Data acquisition geometric model

    图  2  算法流程图

    Figure  2.  Algorithm flowchart

    图  3  传统SAR参数分析

    Figure  3.  Traditional SAR parameter analysis

    图  4  微波光子SAR参数分析

    Figure  4.  Microwave photonic-based SAR parameter analysis

    图  5  传统SAR参数成像结果

    Figure  5.  Traditional SAR imaging results

    图  6  微波光子SAR参数成像结果

    Figure  6.  Microwave photonic-based SAR imaging results

    图  7  10 GHz车载微波光子雷达参数分析

    Figure  7.  10 GHz microwave photonic-based SAR parameter analysis

    图  8  雷峰塔微波光子雷达成像结果

    Figure  8.  10 GHz microwave photonic-based SAR imaging results

    图  9  雷峰塔微波光子雷达成像结果局部方法图

    Figure  9.  Typical area of 10 GHz microwave photonic-based SAR imaging results

    表  1  载机飞行参数

    Table  1.   Flight parameters

    参数参数
    飞行速度100 m/s飞行高度3 km
    中心斜距10 km运动误差1 m
    下载: 导出CSV

    表  2  SAR成像参数

    Table  2.   SAR imaging parameters

    参数微波光子SAR传统SAR
    中心频率35 GHz9.6 GHz
    带宽10 GHz500 MHz
    采样频率500 MHz500 MHz
    方位波束宽度16°
    距离分辨率1.5 cm0.3 m
    方位分辨率1.5 cm0.3 m
    脉冲重复频率8000 Hz800 Hz
    下载: 导出CSV

    表  3  车载微波光子雷达系统参数

    Table  3.   SAR system parameters

    参数参数
    中心频率35 GHz飞行速度10 km/h
    带宽10 GHz俯仰角13°
    采样频率500 MHz距离分辨率1.5 cm
    脉冲重复频率666 Hz方位波束宽度13°
    中心斜距150 m方位分辨率1.5 cm
    下载: 导出CSV
  • [1] FORNARO G. Trajectory deviations in airborne SAR: Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997–1009. doi: 10.1109/7.784069
    [2] MAO Xinhua, ZHU Daiyin, and ZHU Zhaoda. Polar format algorithm wavefront curvature compensation under arbitrary radar flight path[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 526–530. doi: 10.1109/LGRS.2011.2173291
    [3] YANG Lei, XING Mengdao, WANG Yong, et al. Compensation for the NsRCM and phase error after polar format resampling for airborne spotlight SAR raw data of high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 165–169. doi: 10.1109/LGRS.2012.2196676
    [4] LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
    [5] LAGHEZZA F, SCOTTI F, ONORI D, et al. ISAR imaging of non-cooperative targets via dual band photonics-based radar system[C]. Proceedings of the 17th International Radar Symposium, Krakow, Poland, 2016: 1–4. doi: 10.1109/IRS.2016.7497319.
    [6] WO Jianghai, WANG Anle, ZHANG Jin, et al. Wideband tunable microwave generation using a dispersion compensated optoelectronic oscillator[C]. Proceedings of 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), Singapore, Singapore, 2017: 1–2. doi: 10.1109/OECC.2017.8114928.
    [7] LI Yake, LIU Chang, WANG Yanfei, et al. A robust motion error estimation method based on raw data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2780–2790. doi: 10.1109/TGRS.2011.2175737
    [8] 邢孟道, 保铮. 基于运动参数估计的SAR成像[J]. 电子学报, 2001, 29(12A): 1824–1828. doi: 10.3321/j.issn:0372-2112.2001.z1.023

    XING Mengdao and BAO Zheng. Motion parameter estimation based SAR imaging[J]. Acta Electronica Sinica, 2001, 29(12A): 1824–1828. doi: 10.3321/j.issn:0372-2112.2001.z1.023
    [9] EICHEL P H and JAKOWATZ C V. Phase-gradient algorithm as an optimal estimator of the phase derivative[J]. Optics Letters, 1989, 14(20): 1101–1103. doi: 10.1364/OL.14.001101
    [10] XU Gang, XING Mengdao, ZHANG Lei, et al. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031–5046. doi: 10.1109/tgrs.2013.2276112
    [11] ZHU Daiyin, JIANG Rui, MAO Xinhua, et al. Multi-subaperture PGA for SAR autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 468–488. doi: 10.1109/taes.2013.6404115
    [12] CHEN Jianlai, XING Mengdao, SUN Guangcai, et al. A 2-D space-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6390–6401. doi: 10.1109/tgrs.2017.2727060
    [13] YANG Mingdong, ZHU Daiyin, and SONG Wei. Comparison of two-step and one-step motion compensation algorithms for airborne synthetic aperture radar[J]. Electronics Letters, 2015, 51(14): 1108–1110. doi: 10.1049/el.2015.1350
    [14] ZHANG Lei, WANG Guanyong, QIAO Zhijun, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 184–193. doi: 10.1109/JSTARS.2016.2577588
    [15] CANTALLOUBE H. SAR retrieval of a ship vertical profile from her roll and pitch motion[C]. Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1–4.
    [16] HÖGBOM J A. Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement, 1974, 15(3): 417–426.
    [17] 唐江文, 邓云凯, 王宇, 等. 高分辨率滑动聚束SAR BP成像及其异构并行实现[J]. 雷达学报, 2017, 6(4): 368–375. doi: 10.12000/JR16053

    TANG Jiangwen, DENG Yunkai, WANG Yu, et al. High-resolution slide spotlight SAR imaging by BP algorithm and heterogeneous parallel implementation[J]. Journal of Radars, 2017, 6(4): 368–375. doi: 10.12000/JR16053
    [18] WEHNER D R. High Resolution Radar[M]. Norwood, MA: Artech House, 1987.
    [19] ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  3793
  • HTML全文浏览量:  782
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2019-03-20
  • 网络出版日期:  2019-04-01

目录

    /

    返回文章
    返回