微波光子相控阵的技术分析与展望

高晖 邓晔 张金平 周志鹏

高晖, 邓晔, 张金平, 等. 微波光子相控阵的技术分析与展望[J]. 雷达学报, 2019, 8(2): 251–261. doi: 10.12000/JR18105
引用本文: 高晖, 邓晔, 张金平, 等. 微波光子相控阵的技术分析与展望[J]. 雷达学报, 2019, 8(2): 251–261. doi: 10.12000/JR18105
GAO Hui, DENG Ye, ZHANG Jinping, et al. Analysis and prospects of phased array radar based on microwave photonics[J]. Journal of Radars, 2019, 8(2): 251–261. doi: 10.12000/JR18105
Citation: GAO Hui, DENG Ye, ZHANG Jinping, et al. Analysis and prospects of phased array radar based on microwave photonics[J]. Journal of Radars, 2019, 8(2): 251–261. doi: 10.12000/JR18105

微波光子相控阵的技术分析与展望

doi: 10.12000/JR18105
基金项目: 国家重点基础研究发展计划(2017-JCJQ-ZD-039)
详细信息
    作者简介:

    高 晖(1984–),男,山东济宁人,博士,高级工程师。2012年毕业于山东大学信息学院无线电物理专业,获理学博士学位。现为中国电子科技集团公司第十四研究所天线与微波技术国防科技重点实验室成员。主要研究方向为新体制相控阵雷达技术,微波光子技术等。目前已发表SCI、EI论文20余篇,申请国防专利3项。E-mail: sss_gaohui@126.com

    邓 晔(1989–),男,贵州习水人,博士,工程师。2016年毕业于中国科学院半导体研究所微电子与固体电子学专业,获工学博士学位。现为中国电子科技集团公司第十四研究所天线与微波技术国防科技重点实验室成员。主要研究方向为毫米波相控阵技术,微波光子雷达技术等。目前已发表SCI、EI论文10余篇

    张金平(1982–),男,江西宁都人,博士,研究员。2007年毕业于中国科学技术大学电磁场与微波技术专业,获工学博士学位。现为中国电子科技集团公司第十四研究所天线与微波技术国防科技重点实验室成员。长期从事相控阵天线理论研究和工程实践,主持完成多种相控阵天线型号研发。入选2016年江苏省“333高层次人才培养工程”,2017年度中国电子科技集团公司青年拔尖人才。共获国防科技进步奖等省部级奖励四项,发表论文10余篇

    周志鹏(1967–),男,湖南宁乡人,研究员。中国电子科技集团公司第十四研究所首席专家,天线与微波国防科技重点实验室学术带头人。主要研究方向涉及雷达微波馈源与馈线网络技术,微波TR组件技术,固态有源相控阵天线技术等。先后承担和主持多项国家重大国防工程武器装备研制工作,获得国家科技进步特等奖1项、一等奖1项。担任总装备部军用电子元器件监理专家,IEEE南京分部副主席。先后发表论文数十篇,出版《雷达微波新技术》等专著3部

    通讯作者:

    高晖 sss_gaohui@126.com

  • 中图分类号: TN958.92

Analysis and Prospects of Phased Array Radar Based on Microwave Photonics

Funds: The State Key Development Program for Basic Research of China (2017-JCJQ-ZD-039)
More Information
  • 摘要: 该文探讨了相控阵雷达的发展需求,提出了基于微波光子技术的新型相控阵的架构形式和技术路线。针对其工程实现,凝练了当前所面临的主要科学问题和重大技术挑战,并对未来的研究工作和该领域的发展进行了展望。

     

  • 图  1  未来相控阵雷达发展趋势示意

    Figure  1.  Development trend of phased array radar in the future

    图  2  基于微波光子的新型相控阵架构

    Figure  2.  The architecture of new phased array radar based on microwave photonic technology

    图  3  近年来微波光子ADC与电子ADC性能对比

    Figure  3.  Performance comparison of microwave photonic ADC and electronic ADC in recent years

    图  4  基于微波光子技术的新型相控阵雷达技术研究及工程应用路线图

    Figure  4.  Research and engineering application roadmap of new phased array radar based on microwave photonic technology

    表  1  大动态范围微波光子链路实现手段的优缺点比较

    Table  1.   Comparisons of merits and drawbacks of ways of realizing large dynamic range ROF links

    关键技术优点缺点
    低偏置技术结构简单偏置点的漂移会造成补偿技术的失效甚至损伤
    前馈失真补偿技术稳定性好结构非常复杂;需要精确的延时匹配
    预失真电路设计系统结构简单,成本低工作带宽窄
    DSP后失真补偿降低系统硬件复杂度需准确获知系统的传递函数模型;
    带宽受ADC的带宽限制
    基于并行MZM的
    IMD3抑制技术
    可结合低偏置的优势,最大限度
    提高SFDR
    需求精确的延时匹配;需要准确的
    光电功率分配
    下载: 导出CSV
  • [1] 弗·伊·斯里普琴科, 张铁华, 译. 第六代战争[M]. 北京: 新华出版社, 2004: 1–395.

    Slipchenko B N. The Sixth Generation of Wat[M]. Beijing: Xinhua Publishing House, 2004: 1–395.
    [2] CAPMANY J and NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319–330. doi: 10.1038/nphoton.2007.89
    [3] YAO Jianping. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314–335. doi: 10.1109/JLT.2008.2009551
    [4] MCKINNEY J D. Photonics illuminates the future of radar[J]. Nature, 2014, 507(7492): 310–312. doi: 10.1038/507310a
    [5] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
    [6] LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
    [7] ZHANG Fangzheng, GUO Qingshui, WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274
    [8] PORCINO D and HIRT W. Ultra-wideband radio technology: Potential and challenges ahead[J]. IEEE Communications Magazine, 2003, 41(7): 66–74. doi: 10.1109/MCOM.2003.1215641
    [9] 吴曼青. 数字阵列雷达及其进展[J]. 中国电子科学研究院学报, 2006, 1(1): 11–16. doi: 10.3969/j.issn.1673-5692.2006.01.005

    WU Manqing. The development of digital array radar[J]. Journal of China Academy of Electronics and Information Technology, 2006, 1(1): 11–16. doi: 10.3969/j.issn.1673-5692.2006.01.005
    [10] 胡先志. 光器件及其应用[M]. 北京: 电子工业出版社, 2010: 56–58.

    HU Xianzhi. Optical Devices with Applications[M]. Beijing, Publishing House of Electronics Industry, 2010: 56–58.
    [11] RIDGWAY R W, CONWAY J A, and DOHRMAN C L. Microwave photonics: Recent programs at DARPA[C]. 2013 IEEE International Topical Meeting on Microwave Photonics, Alexandria, VA, USA, 2013: 286–289. doi: 10.1109/MWP.2013.6724077.
    [12] LI Yifei and HERCZFELD P. Coherent PM optical link employing ACP-PPLL[J]. Journal of Lightwave Technology, 2009, 27(9): 1086–1094. doi: 10.1109/JLT.2008.929415
    [13] 方立军, 李佩, 马骏, 等. 基于微波光电技术的未来数字阵列构想[J]. 雷达科学与技术, 2013, 11(6): 583–586. doi: 10.3969/j.issn.1672-2337.2013.06.004

    FANG Lijun, LI Pei, MA Jun, et al. An idea for future digital array radar based on microwave optoelectronics[J]. Radar Science and Technology, 2013, 11(6): 583–586. doi: 10.3969/j.issn.1672-2337.2013.06.004
    [14] SCHIPPERS H, VERPOORTE J, JORNA P, et al. Broadband optical beam forming for airborne phased array antenna[C]. 2009 IEEE Aerospace Conference, Big Sky, USA, 2009: 1–19. doi: 10.1109/AERO.2009.4839363.
    [15] TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485
    [16] YI Lilin, HU Weisheng, HE Hao, et al. A polarization-independent ultra-fast 2×2 multicast-capable optical switch[C]. 2008 International Conference on Photonics in Switching, Sapporo, Japan, 2008: 1–2. doi: 10.1109/PS.2008.4804162.
    [17] YAO X S and MALEKI L. Optoelectronic microwave oscillator[J]. Journal of the Optical Society of America B, 1996, 13(8): 1725–1735. doi: 10.1364/JOSAB.13.001725
    [18] OEwaves corporation[EB/OL]. http://www.oewaves.com.
    [19] 陈吉新, 周涛. 光电振荡器的相位噪声特性[J]. 红外与激光工程, 2008, 37(5): 863–865, 893. doi: 10.3969/j.issn.1007-2276.2008.05.027

    CHEN Jixin and ZHOU Tao. Characteristic of phase noise of optoelectronic oscillator[J]. Infrared and Laser Engineering, 2008, 37(5): 863–865, 893. doi: 10.3969/j.issn.1007-2276.2008.05.027
    [20] PSYCHOGIOU D, GÓMEZ-GARCÍA R, and PEROULIS D. Recent advances in reconfigurable microwave filter design[C]. 2016 IEEE 17th Annual Wireless and Microwave Technology Conference, Clearwater, FL, USA, 2016: 1–6.
    [21] CAPMANY J, ORTEGA B, and PASTOR D. A tutorial on microwave photonic filters[J]. Journal of Lightwave Technology, 2006, 24(1): 201–229. doi: 10.1109/JLT.2005.860478
    [22] 吕强, 孙亨利, 张安旭, 等. 基于微波光子的灵活有效载荷系统研究[J]. 无线电工程, 2016, 46(9): 10–14. doi: 10.3969/j.issn.1003-3106.2016.09.03

    LV Qiang, SUN Hengli, ZHANG Anxu, et al. Microwave photonic technologies for flexible satellite payloads[J]. Radio Engineering, 2016, 46(9): 10–14. doi: 10.3969/j.issn.1003-3106.2016.09.03
    [23] LI Pengxiao, SHI Ran, CHEN Minghua, et al. Downconversion and linearization of X- and K-band analog photonic links using digital post-compensation[C]. 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, USA, 2013: 1–3. doi: 10.1364/NFOEC.2013.JW2A.59.
    [24] WALDEN R H. Analog-to-digital converter survey and analysis[J]. IEEE Journal on Selected Areas in Communication, 1999, 17(4): 539–550. doi: 10.1109/49.761034
    [25] WALDEN R H. Analog-to-digital Conversion in the Early Twenty-first Century[M]. WAH B W. Wiley Encyclopedia of Computer Science and Engineering. Hoboken: John Wiley & Sons, Inc., 2008.
    [26] VALLEY G C. Photonic analog-to-digital converters[J]. Optics Express, 2007, 15(5): 1955–1982. doi: 10.1364/OE.15.001955
    [27] GOPALAKRISHNAN G K, BURNS W K, and BULMER C H. Microwave-optical mixing in LiNbO3 modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(12): 2383–2391. doi: 10.1109/22.260732
    [28] CHAN E H W and MINASIAN R A. Microwave photonic downconverter with high conversion efficiency[J]. Journal of Lightwave Technology, 2012, 30(23): 3580–3585. doi: 10.1109/JLT.2012.2223197
    [29] 赵建宜. WDM-PON用单片集成光源芯片的理论与实验研究[D]. [博士论文], 华中科技大学, 2014.

    ZHAO Jianyi. Theory and experimental study on monolithic integrated optoelectronic source devices for WDM-PON application[D]. [Ph.D. dissertation], Huazhong University of Science and Technology, 2014.
    [30] 李向华. 大动态范围微波光子链路的研究[D]. [博士论文], 东南大学, 2015.

    LI Xianghua. Research on the high dynamic range microwave photonic links[D]. [Ph.D. dissertation], Southeast University, 2015.
    [31] 王翌. 可调谐微波光子滤波器的研究[D]. [博士论文], 浙江大学, 2014.

    WANG Yi. Research on tunable microwave photonic filters[D]. [Ph.D. dissertation], Zhejiang University, 2014.
    [32] CZUBA K, EINTS F, FELBER M, et al. First generation of optical fiber phase reference distribution system for TESLA[R]. TESLA Report 2005-08, 2005: 6-8.
    [33] ZHANG Weifeng and YAO Jianping. Silicon-based integrated microwave photonics[J]. IEEE Journal of Quantum Electronics, 2016, 52(1): 0600412. doi: 10.1109/JQE.2015.2501639
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  5901
  • HTML全文浏览量:  2437
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-03-25
  • 网络出版日期:  2019-04-01

目录

    /

    返回文章
    返回