MIMO雷达三维干涉诊断成像方法

许小剑 刘永泽

许小剑, 刘永泽. MIMO雷达三维干涉诊断成像方法[J]. 雷达学报, 2018, 7(6): 655-663. doi: 10.12000/JR18088
引用本文: 许小剑, 刘永泽. MIMO雷达三维干涉诊断成像方法[J]. 雷达学报, 2018, 7(6): 655-663. doi: 10.12000/JR18088
Xu Xiaojian, Liu Yongze. Three-dimensional Interferometric MIMO Radar Imaging for Target Scattering Diagnosis[J]. Journal of Radars, 2018, 7(6): 655-663. doi: 10.12000/JR18088
Citation: Xu Xiaojian, Liu Yongze. Three-dimensional Interferometric MIMO Radar Imaging for Target Scattering Diagnosis[J]. Journal of Radars, 2018, 7(6): 655-663. doi: 10.12000/JR18088

MIMO雷达三维干涉诊断成像方法

DOI: 10.12000/JR18088
基金项目: 国家自然科学基金(61371005)
详细信息
    作者简介:

    许小剑(1963–),男,籍贯江西万安,博士,现为北京航空航天大学电子信息工程学院信号与信息处理学科责任教授,博士生导师。主要研究方向为遥感特征建模、分析与处理、雷达成像与目标识别、智能化信息处理等。E-mail: xiaojianxu@buaa.edu.cn

    刘永泽(1980–),男,籍贯河北邯郸,博士,石家庄铁道大学信息科学与技术学院。主要研究方向为阵列信号处理、雷达系统设计、RCS测量与成像等。E-mail: liuyongze68@eyou.com

    通讯作者:

    刘永泽   liuyongze68@eyou.com

  • 中图分类号: TN959.6

Three-dimensional Interferometric MIMO Radar Imaging for Target Scattering Diagnosis

Funds: The National Natural Science Foundation of China (61371005)
  • 摘要: 2维合成孔径雷达(Synthetic Aperture Radar, SAR)和逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)成像是目标散射机理高分辨率分析和散射诊断测量的重要手段,现有被广泛采用的技术主要包括转台ISAR和导轨SAR成像技术。相比于传统的2维成像,3维成像可以提供目标局部散射中心在空间的3维位置和散射强度信息。因此,探索新的、可工程化实现与应用的目标3维成像技术是一项极具吸引力的工作。该文提出一种基于多输入多输出(Multiple-Input Multiple-Output, MIMO)阵列技术的3维干涉成像方法。首先,设计并试验了一种具有高孔径利用率和通过虚拟孔径实现干涉成像功能的MIMO阵列;其次,分析了MIMO阵列合成的两组虚拟孔径所成两幅2维雷达像的干涉相位与目标散射中心高度之间的关系,发展了MIMO雷达3维干涉成像算法;最后,通过数值仿真和原理样机实验验证了所提方法在目标散射机理分析和诊断测量应用中的可行性和有效性。

     

  • 图  1  MIMO阵列设计

    Figure  1.  MIMO array design

    图  2  3维干涉成像几何关系

    Figure  2.  Three-dimensional interferometric imaging geometry

    图  3  散射中心高程解算流程

    Figure  3.  Procedure of scatterer altitude calculation

    图  4  飞机模型MIMO雷达3D干涉成像仿真结果

    Figure  4.  Simulation results of MIMO radar 3D interferometric imaging for an aircraft model

    图  5  MIMO雷达实验系统

    Figure  5.  Photo of the experimental MIMO radar

    图  6  金属球组合体3D干涉成像测量场景

    Figure  6.  Practical measurement scene of metallic spheres for 3D interferometric imaging

    图  7  金属球组合体MIMO雷达 3D干涉成像测量结果

    Figure  7.  Experimental results of MIMO radar 3D interferometric imaging for metallic spheres

    图  8  全尺寸飞机模型MIMO雷达3D干涉成像测量结果

    Figure  8.  Experimental results of MIMO radar 3D interferometric imaging for a full-scale aircraft model

    表  1  全尺寸飞机模型目标散射机理

    Table  1.   Scattering mechanisms of the full-scale aircraft model

    散射中心 飞机上位置
    散射1 后起落架
    散射2,散射3,散射4 挂载
    散射5 进气道
    散射6 前起落架
    散射7 驾驶舱
    散射8 头部散射
    散射9 进气道腔体多次散射
    下载: 导出CSV
  • [1] 黄培康, 许小剑, 巢增明, 等. 小角度旋转目标微波成像[J]. 电子学报, 1992, 20(6): 54–60. DOI: 10.3321/j.issn:0372-2112.1992.06.010

    Huang Pei-kang, Xu Xiao-jian, Chao Zeng-ming, et al. Microwave imaging of targets rotating in a small azimuth angle range[J]. Acta Electronica Sinica, 1992, 20(6): 54–60. DOI: 10.3321/j.issn:0372-2112.1992.06.010
    [2] Broquetas A, Palau J, Jofre L, et al. Spherical wave near-field imaging and radar cross-section measurement[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5): 730–735. DOI: 10.1109/8.668918
    [3] Osipov A, Kobayashi H, and Suzuki H. An improved image-based circular near-field-to-far-field transformation[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2): 989–993. DOI: 10.1109/TAP.2012.2216853
    [4] LaHaie I J. Overview of an image-based technique for predicting far-field radar cross section from near-field measurements[J]. IEEE Antennas and Propagation Magazine, 2003, 45(6): 159–169. DOI: 10.1109/MAP.2003.1282192
    [5] Charvat G L, Kempel L C, and Coleman C. A low-power high-sensitivity x-band rail SAR imaging system[J]. IEEE Antennas and Propagation Magazine, 2008, 50(3): 108–115. DOI: 10.1109/MAP.2008.4563576
    [6] LaHaie I J and Rice S A. Antenna-pattern correction for near-field-to-far field RCS transformation of 1D linear SAR measurements[J]. IEEE Antennas and Propagation Magazine, 2004, 46(4): 177–183. DOI: 10.1109/MAP.2004.1374048
    [7] Sensani S, Cioni R, Guidoni A, et al.. Radar image based near-field to far-field conversion algorithm in RCS measurements[EB/OL]. http://idscorporation.com.
    [8] Fishler E, Haimovich A, Blum R, et al.. MIMO radar: An idea whose time has come[C]. Proceedings of 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 71–78.
    [9] Rabideau D J and Parker P. Ubiquitous MIMO multifunction digital array radar[C]. Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 2003: 1057–1064.
    [10] Zeng T, Mao C, Hu C, et al.. Multi-static MIMO-SAR three dimensional deformation measurement system[C]. Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015: 297–301. DOI: 10.1109/APSAR.2015.7306212.
    [11] 巩朋成, 刘刚, 黄禾, 等. 频控阵MIMO雷达中基于稀疏迭代的多维信息联合估计方法[J]. 雷达学报, 2018, 7(2): 194–201. DOI: 10.12000/JR16121

    Gong Peng-cheng, Liu Gang, Huang He, et al. Multidimensional parameter estimation method based on sparse iteration in FDA-MIMO radar[J]. Journal of Radars, 2018, 7(2): 194–201. DOI: 10.12000/JR16121
    [12] Massaloux P and Bérisset P. Study of a near field RCS imaging system based on a MIMO array[C]. Proceedings of Antenna Measurement Techniques Association (AMTA) Symposium, Atlanta, USA, 2010.
    [13] Stewart K B, Majurec N, Burkholder R J, et al.. Waveform-diverse MIMO imaging radar target measurements[C]. Proceedings of 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 918–922. DOI: 10.1109/RADAR.2014.6875722.
    [14] Sun J W, Du L G, and Jiang W S. Design of a 1-D sparse UWB MIMO array for near field RCS imaging system[C]. Proceedings of 2015 Asia-Pacific Microwave Conference, Nanjing, China, 2015, 2: 1–3. DOI: 10.1109/APMC.2015.7413116.
    [15] Yan Z, Liu W, Chang Q G, et al.. Design of a near-field radar imaging system based on MIMO array[C]. Proceedings of the 2015 12th IEEE International Conference on Electronic Measurement & Instruments, Qingdao, China, 2015, 3: 1265–1269. DOI: 10.1109/ICEMI.2015.7494513.
    [16] Liu Y Z, Xu X J, and Xu G Y. MIMO radar calibration and imagery for near-field scattering diagnosis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 442–452. DOI: 10.1109/TAES.2017.2760758
    [17] Liu Y Z and Xu X J. Antenna pattern compensation technique for near field MIMO radar imaging[C]. Proceedings of 2016 International Conference on Electromagnetics in Advanced Applications, Cairns, Australia, 2016: 385–388. DOI: 10.1109/ICEAA.2016.7731406.
    [18] Liu Y Z and Xu X J. Azimuth sidelobe suppression technique for near-field MIMO radar imaging[C]. Proceedings of SPIE 9643, Image and Signal Processing for Remote Sensing XXI, Toulouse, France, 2015: 96431E. DOI: 10.1117/12.2194474.
    [19] Wang G Y, Xia X G, and Chen V C. Three-dimensional ISAR imaging of maneuvering targets using three receivers[J]. IEEE Transactions on Image Processing, 2001, 10(3): 436–447. DOI: 10.1109/83.908519
    [20] Xu X J and Narayanan R M. Three-dimensional interferometric ISAR imaging for target scattering diagnosis and modeling[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1094–1102. DOI: 10.1109/83.931103
    [21] 肖志河, 戴朝明, 巢增明, 等. 旋转目标干涉逆合成孔径三维成像技术[J]. 电子学报, 1999, 27(12): 19–22. DOI: 10.3321/j.issn:0372-2112.1999.12.006

    Xiao Zhi-he, Dai Chao-ming, Chao Zeng-ming, et al. INISAR 3-D imaging technique for rotating targets[J]. Acta Electronica Sinica, 1999, 27(12): 19–22. DOI: 10.3321/j.issn:0372-2112.1999.12.006
    [22] Nico G, Leva D, Antonello A, et al. Ground-based SAR interferometry for terrain mapping: Theory and sensitivity analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1344–1350. DOI: 10.1109/TGRS.2004.826556
    [23] 杨晓琳, 谭维贤, 乞耀龙, 等. 基于单特显点目标回波的阵列3D SAR幅相误差一致性校正方法研究[J]. 雷达学报, 2014, 3(4): 409–418. DOI: 10.3724/SP.J.1300.2014.14037

    Yang Xiao-lin, Tan Wei-xian, Qi Yao-long, et al. Amplitude and phase errors correction for array 3D SAR system based on single prominent point like target echo data[J]. Journal of Radars, 2014, 3(4): 409–418. DOI: 10.3724/SP.J.1300.2014.14037
    [24] 许小剑. 雷达目标散射特性测量与处理新技术[M]. 北京: 国防工业出版社, 2017: 286–299.

    Xu Xiao-jian. New Techniques for Radar Target Scattering Signature Measurement and Processing[M]. Beijing: National Defense Industry Press, 2017: 286–299.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2528
  • HTML全文浏览量:  598
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-19
  • 修回日期:  2018-12-15
  • 网络出版日期:  2018-12-28

目录

    /

    返回文章
    返回