[1] |
LEVANON N. Radar Principles[M]. New York: Wiley, 1998: 129–143.
|
[2] |
WU X H, ZHU W P, and YAN J. A high-resolution DOA estimation method with a family of nonconvex penalties[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4925–4938. doi: 10.1109/TVT.2018.2817638
|
[3] |
SHEN F F, LIU Y M, LI X P, et al.. High resolution DOA estimation based on Bayesian compressive sensing[C]. Proceedings of the 2017 2nd International Conference on Frontiers of Sensors Technologies, Shenzhen, China, 2017: 274–278. doi: 10.1109/ICFST.2017.8210518.
|
[4] |
LI X Y, GUO S X, JIN L, et al. High-resolution DOA estimation for cooperation networks using space-time hopping[J]. Electronics Letters, 2016, 52(11): 978–980. doi: 10.1049/el.2015.4194
|
[5] |
LEE H B. The Cramer-rao bound on frequency estimates of signals closely spaced in frequency[J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1569–1572. doi: 10.1109/78.286979
|
[6] |
SMITH S T. Statistical resolution limits and the complexified Cramér-rao bound[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1597–1609. doi: 10.1109/TSP.2005.845426
|
[7] |
EL KORSO M N, BOYER R, RENAUX A, et al. Statistical resolution limit for multiple parameters of interest and for multiple signals[C]. Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 3602–3605. doi: 10.1109/ICASSP.2010.5495922.
|
[8] |
BAO T, EL KORSO M N, and OUSLIMANI H H. Cramér-rao bound and statistical resolution limit investigation for near-field source localization[J]. Digital Signal Processing, 2016, 48: 137–147. doi: 10.1016/j.dsp.2015.09.019
|
[9] |
SHAHRAM M and MILANFAR P. On the resolvability of sinusoids with nearby frequencies in the presence of noise[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2579–2588. doi: 10.1109/TSP.2005.845492
|
[10] |
LIU Z and NEHORAI A. Statistical angular resolution limit for point sources[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5521–5527. doi: 10.1109/TSP.2007.898789
|
[11] |
EL KORSO M N, BOYER R, RENAUX A, et al. On the asymptotic resolvability of two point sources in known subspace interference using a GLRT-based framework[J]. Signal Processing, 2012, 92(10): 2471–2483. doi: 10.1016/j.sigpro.2012.03.011
|
[12] |
ZHU W, TANG J, and WAN S. Angular resolution limit of two closely-spaced point sources based on information theoretic criteria[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 86–90. doi: 10.1109/ICASSP.2014.6853563.
|
[13] |
SUN M H, JIANG D D, SONG H B, et al. Statistical resolution limit analysis of two closely spaced signal sources using Rao test[J]. IEEE Access, 2017, 5: 22013–22022. doi: 10.1109/ACCESS.2017.2760885
|
[14] |
THAMERI M, ABED-MERAIM K, FOROOZAN F, et al. On the Statistical Resolution Limit (SRL) for time-reversal based MIMO radar[J]. Signal Processing, 2018, 144: 373–383. doi: 10.1016/j.sigpro.2017.10.029
|
[15] |
SHAHRAM M and MILANFAR P. Imaging below the diffraction limit: A statistical analysis[J]. IEEE Transactions on Image Processing, 2004, 13(5): 677–689. doi: 10.1109/TIP.2004.826096
|
[16] |
SHAHRAM M and MILANFAR P. Statistical and information-theoretic analysis of resolution in imaging[J]. IEEE Transactions on Information Theory, 2006, 52(8): 3411–3437. doi: 10.1109/TIT.2006.878180
|
[17] |
KAY S M. Fundamentals of Statistical Signal Processing: Detection Theory[M]. Upper Saddle River, NJ: Prentice-Hall, 1998.
|
[18] |
KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Upper Saddle River, NJ: Prentice-Hall, 1993.
|
[19] |
CARDANO G. Ars Magna or the Rules of Algebra[M]. Mineola: Dover, 1993.
|