基于假设检验理论的雷达近邻目标距离统计分辨限

张云雷 汤俊 王力

张云雷, 汤俊, 王力. 基于假设检验理论的雷达近邻目标距离统计分辨限[J]. 雷达学报, 2019, 8(1): 17–24. doi: 10.12000/JR18085
引用本文: 张云雷, 汤俊, 王力. 基于假设检验理论的雷达近邻目标距离统计分辨限[J]. 雷达学报, 2019, 8(1): 17–24. doi: 10.12000/JR18085
ZHANG Yunlei, TANG Jun, and WANG Li. Hypothesis-testing-based range statistical resolution limit of radar[J]. Journal of Radars, 2019, 8(1): 17–24. doi: 10.12000/JR18085
Citation: ZHANG Yunlei, TANG Jun, and WANG Li. Hypothesis-testing-based range statistical resolution limit of radar[J]. Journal of Radars, 2019, 8(1): 17–24. doi: 10.12000/JR18085

基于假设检验理论的雷达近邻目标距离统计分辨限

DOI: 10.12000/JR18085
基金项目: 国家重点研发计划(2016YFA0302102),国家自然科学基金(61501486)
详细信息
    作者简介:

    张云雷(1981–),男,河北晋州人,海军工程大学讲师,现为清华大学电子工程系在读博士生,研究方向为MIMO雷达信号处理和波形设计、软件化雷达等。E-mail: zhangyunlei04@163.com

    汤 俊(1973–),男,江苏南京人,博士,教授,2000年在清华大学电子工程系获得博士学位,现为清华大学电子工程系教授,研究方向为阵列信号处理、MIMO雷达信号处理、软件化雷达等,目前发表文章百余篇。E-mail: tangj_ee@tsinghua.edu.cn

    王 力(1983–),男,四川宜宾人,清华大学电子工程系在读博士生,主要研究方向为目标跟踪和MIMO雷达波形设计。E-mail: wangli_apple@163.com

    通讯作者:

    汤俊  tangj_ee@tsinghua.edu.cn

  • 中图分类号: TN957

Hypothesis-testing-based Range Statistical Resolution Limit of Radar

Funds: The National Key Research and Development Program of China (2016YFA0302102), The National Natural Science Foundation of China under Grant (61501486)
More Information
  • 摘要: 分辨率是雷达系统的重要性能指标之一,传统采用模糊函数(AF)来分析波形的距离和多普勒分辨能力。该文提出以下观点:第一,传统的模糊函数分析方法的基本出发点是首先采用匹配滤波来处理回波信号,而从机理上来说,匹配滤波是在白噪声和点目标前提下使得输出信噪比(SNR)最大,对检测来说最优,但不适用于多个目标的分辨问题;第二,模糊函数分析方法并不能反映出噪声、目标起伏等随机因素,以及近距多目标波形相互干扰等因素的影响;第三,模糊函数只适用于两相同信噪比目标分辨,不适用于实际中经常存在的不同信噪比的多个目标的分辨。该文基于原始回波数据,采用统计学中的假设检验理论来研究雷达近邻目标距离分辨的问题,在给出统计意义上的正确分辨概率和虚判概率定义基础上,推导近邻目标距离统计分辨限(SRL)的表达式。仿真表明,统计分辨限可以突破瑞利限。当设定虚判概率和分辨概率分别为0.001和0.5时,对两幅度相位差为90度的0 dB的线性调频信号,距离统计分辨下限可达0.3倍瑞利限。

     

  • 图  1  两线性调频信号相关的单次蒙特卡洛仿真

    Figure  1.  Monte Carlo simulation of the correlation result of two LFM signals

    图  2  假设检验和匹配滤波方法的分辨性能对比

    Figure  2.  Comparisons of the hypothesis test and matched filter

    图  3  匹配滤波方法的分辨性能

    Figure  3.  Performance of matched filter

    图  4  分辨概率与相关系数的关系

    Figure  4.  Relationship of the resolution rate and the correlation coefficient

    图  5  Pd=0.9时SRL与信噪比的关系

    Figure  5.  Relationship of SRL and SNR with Pd=0.9

    图  6  SNR1=SNR2=0 dB时SRL和分辨概率及虚判概率的关系

    Figure  6.  Relationship of SRL and the resolution rate & the false-alarm rate with SNR1=SNR2=0 dB

  • [1] LEVANON N. Radar Principles[M]. New York: Wiley, 1998: 129–143.
    [2] WU X H, ZHU W P, and YAN J. A high-resolution DOA estimation method with a family of nonconvex penalties[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4925–4938. doi: 10.1109/TVT.2018.2817638
    [3] SHEN F F, LIU Y M, LI X P, et al.. High resolution DOA estimation based on Bayesian compressive sensing[C]. Proceedings of the 2017 2nd International Conference on Frontiers of Sensors Technologies, Shenzhen, China, 2017: 274–278. doi: 10.1109/ICFST.2017.8210518.
    [4] LI X Y, GUO S X, JIN L, et al. High-resolution DOA estimation for cooperation networks using space-time hopping[J]. Electronics Letters, 2016, 52(11): 978–980. doi: 10.1049/el.2015.4194
    [5] LEE H B. The Cramer-rao bound on frequency estimates of signals closely spaced in frequency[J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1569–1572. doi: 10.1109/78.286979
    [6] SMITH S T. Statistical resolution limits and the complexified Cramér-rao bound[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1597–1609. doi: 10.1109/TSP.2005.845426
    [7] EL KORSO M N, BOYER R, RENAUX A, et al. Statistical resolution limit for multiple parameters of interest and for multiple signals[C]. Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 3602–3605. doi: 10.1109/ICASSP.2010.5495922.
    [8] BAO T, EL KORSO M N, and OUSLIMANI H H. Cramér-rao bound and statistical resolution limit investigation for near-field source localization[J]. Digital Signal Processing, 2016, 48: 137–147. doi: 10.1016/j.dsp.2015.09.019
    [9] SHAHRAM M and MILANFAR P. On the resolvability of sinusoids with nearby frequencies in the presence of noise[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2579–2588. doi: 10.1109/TSP.2005.845492
    [10] LIU Z and NEHORAI A. Statistical angular resolution limit for point sources[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5521–5527. doi: 10.1109/TSP.2007.898789
    [11] EL KORSO M N, BOYER R, RENAUX A, et al. On the asymptotic resolvability of two point sources in known subspace interference using a GLRT-based framework[J]. Signal Processing, 2012, 92(10): 2471–2483. doi: 10.1016/j.sigpro.2012.03.011
    [12] ZHU W, TANG J, and WAN S. Angular resolution limit of two closely-spaced point sources based on information theoretic criteria[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 86–90. doi: 10.1109/ICASSP.2014.6853563.
    [13] SUN M H, JIANG D D, SONG H B, et al. Statistical resolution limit analysis of two closely spaced signal sources using Rao test[J]. IEEE Access, 2017, 5: 22013–22022. doi: 10.1109/ACCESS.2017.2760885
    [14] THAMERI M, ABED-MERAIM K, FOROOZAN F, et al. On the Statistical Resolution Limit (SRL) for time-reversal based MIMO radar[J]. Signal Processing, 2018, 144: 373–383. doi: 10.1016/j.sigpro.2017.10.029
    [15] SHAHRAM M and MILANFAR P. Imaging below the diffraction limit: A statistical analysis[J]. IEEE Transactions on Image Processing, 2004, 13(5): 677–689. doi: 10.1109/TIP.2004.826096
    [16] SHAHRAM M and MILANFAR P. Statistical and information-theoretic analysis of resolution in imaging[J]. IEEE Transactions on Information Theory, 2006, 52(8): 3411–3437. doi: 10.1109/TIT.2006.878180
    [17] KAY S M. Fundamentals of Statistical Signal Processing: Detection Theory[M]. Upper Saddle River, NJ: Prentice-Hall, 1998.
    [18] KAY S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. Upper Saddle River, NJ: Prentice-Hall, 1993.
    [19] CARDANO G. Ars Magna or the Rules of Algebra[M]. Mineola: Dover, 1993.
  • 加载中
图(6)
计量
  • 文章访问数:  2469
  • HTML全文浏览量:  1014
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 修回日期:  2018-12-11
  • 网络出版日期:  2019-02-01

目录

    /

    返回文章
    返回