基于矩阵信息几何的飞机尾流目标检测方法

刘俊凯 李健兵 马梁 陈忠宽 蔡益朝

刘俊凯, 李健兵, 马梁, 陈忠宽, 蔡益朝. 基于矩阵信息几何的飞机尾流目标检测方法[J]. 雷达学报, 2017, 6(6): 699-708. doi: 10.12000/JR17058
引用本文: 刘俊凯, 李健兵, 马梁, 陈忠宽, 蔡益朝. 基于矩阵信息几何的飞机尾流目标检测方法[J]. 雷达学报, 2017, 6(6): 699-708. doi: 10.12000/JR17058
Liu Junkai, Li Jianbing, Ma Liang, Chen Zhongkuan, Cai Yichao. Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry[J]. Journal of Radars, 2017, 6(6): 699-708. doi: 10.12000/JR17058
Citation: Liu Junkai, Li Jianbing, Ma Liang, Chen Zhongkuan, Cai Yichao. Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry[J]. Journal of Radars, 2017, 6(6): 699-708. doi: 10.12000/JR17058

基于矩阵信息几何的飞机尾流目标检测方法

DOI: 10.12000/JR17058
基金项目: 国家自然科学基金(61302193,61401503)
详细信息
    作者简介:

    刘俊凯(1979–),男,河北景县,博士,讲师,主要研究方向为新体制雷达探测技术、目标检测、相控阵雷达建模仿真。E-mail: liujkradar@163.com

    李健兵(1979–),男,博士,副研究员,硕士生导师,IEEE Senior Member,中国电子学会高级会员,主要研究方向为大尺度分布式复杂目标的雷达特性与探测。E-mail: jianbingli@nudt.edu.cn

    马梁:马   梁(1983–),男,博士,讲师,主要研究方向为极化信息处理、目标识别、相控阵雷达建模仿真

    通讯作者:

    刘俊凯   liujkradar@163.com

Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry

Funds: The National Natural Science Foundation of China (61302193, 61401503)
  • 摘要:

    矩阵信息几何在雷达信号处理和目标检测中的应用是一个正在引起关注的研究方向。飞机尾流回波经过傅里叶变换后,其功率谱是展宽的,传统动目标检测(MTD)方法未能对展宽的功率谱进行有效积累。针对飞机尾流目标检测问题,基于矩阵信息几何理论,该文提出了一种矩阵恒虚警率(CFAR)检测方法,该方法中观测数据协方差矩阵构成一个矩阵流形,类比CFAR检测的思想,利用检测单元协方差矩阵与参考单元协方差矩阵均值间定义的距离作为检测统计量。最后利用噪声中仿真的尾流回波数据,分析了黎曼均值的迭代估计性能、尾流目标协方差矩阵与噪声协方差矩阵的测地线距离随信噪比的变化,比较了常规MTD检测方法和矩阵CFAR检测方法的检测性能。

     

  • 图  1  仿真的飞机尾流雷达回波

    Figure  1.  Simulation of the aircraft wake radar echo

    图  2  马可尼研究中心X波段雷达测量的功率谱[16]

    Figure  2.  The Power Spectrum measured by the X-band radar in Marconi Research Center

    图  3  基于信息几何的矩阵CFAR检测器框图

    Figure  3.  Block diagram of CA-CFAR detector based on information geometry

    图  4  脉冲个数为16时的自相关函数与功率谱

    Figure  4.  Autocorrelation function and power spectrum when the pulse number is 16

    图  5  协方差矩阵降低维数之前与之后的功率谱

    Figure  5.  The power spectrum before and after the covariance matrix reduces the dimension

    图  6  随SNR的变化测地线距离的变化

    Figure  6.  The variation of geodesic distance with the variation of SNR

    图  7  矩阵均值迭代估计性能

    Figure  7.  Iterative estimation performance of matrix mean

    图  8  有无尾流情况下检测统计量的统计直方图

    Figure  8.  The statistical histogram of detection statistics with and without the vortex target

    图  9  基于矩阵CFAR的尾流目标的检测概率

    Figure  9.  Detection probability of the vortex target based on matrix CFAR

  • [1] 孙华飞, 张真宁, 彭林玉, 等. 信息几何导引[M]. 北京: 科学出版社, 2016.

    Sun Hua-fei, Zhang Zhen-ning, Peng Lin-yu, et al.. An Elementary Introduction to Information Geometry[M]. Beijing: Science Press, 2016.
    [2] Rao C. Information and the accuracy attainable in the estimation of statistical parameters[J]. Bulletin of Calcutta Mathematical Society, 1945, 37: 81–91.
    [3] Chencov N N. Statistical Decision Rules and Optimal Inference[M]. Rhode Island, USA: American Mathematical Society, 1982.
    [4] Amari S I and Nagaoka H. Methods of Information Geometry[M]. Providence, RI: American Mathematical Society, 2000.
    [5] Lenglet C, Rousson M, Deriche R, et al. Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing[J]. Journal of Mathematical Imaging and Vision, 2006, 25(3): 423–444. DOI: 10.1007/s10851-006-6897-z
    [6] Moakher M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 26(3): 735–747. DOI: 10.1137/S0895479803436937
    [7] Nielsen F and Bhatia R. Matrix Information Geometry[M]. Berlin Heidelberg: Springer, 2013.
    [8] Barbaresco F. Interactions between symmetric cone and information geometries: Bruhat-Tits and Siegel spaces models for high resolution autoregressive Doppler imagery[C]. Proceedings of ETVC 2008 Conference, Berlin, Heidelberg, 2009: 124–163.
    [9] Barbaresco F. Innovative tools for radar signal processing based on Cartan’s geometry of SPD matrices & information geometry[C]. Proceedings of 2008 IEEE Radar Conference, Rome, 2008: 1–6.
    [10] Pennec X. Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements[J]. Journal of Mathematical Imaging and Vision, 2006, 25(1): 127–154. DOI: 10.1007/s10851-006-6228-4
    [11] Barbaresco F. Robust statistical radar processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP processing in Siegel homogeneous bounded domains[C]. Proceedings of 2011 IEEE International Radar Symposium, Leipzig, Germany, 2011: 639–644.
    [12] 黎湘, 程永强, 王宏强, 等. 雷达信号处理的信息几何方法[M]. 北京: 科学出版社, 2014.

    Li Xiang, Cheng Yong-qiang, Wang Hong-qiang, et al.. Methods of Information Geometry of Radar Signal Processing[M]. Beijing: Science Press, 2014.
    [13] Broderick A J, Bevilaqua P, Crouch J, et al.. Wake Turbulence: An Obstacle to Increased Air Traffic Capacity[M]. Washington, DC: The National Academies Press, 2008: 1–59.
    [14] 刘俊凯, 李文臣, 王雪松, 等. 基于多普勒特性的飞机尾流回波提取方法[J]. 系统仿真学报, 2011, 23(7): 1323–1328. DOI: 10.16182/j.cnki.joss.2011.07.015

    Liu Jun-kai, Li Wen-chen, Wang Xue-song, et al. Extraction of aircraft wake vortices radar returns based on the Doppler characteristics[J]. Journal of System Simulation, 2011, 23(7): 1323–1328. DOI: 10.16182/j.cnki.joss.2011.07.015
    [15] Gerz T, Holzäpfel F, and Darracq D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181–208. DOI: 10.1016/S0376-0421(02)00004-0
    [16] Shephard D J, Kyte A P, and Segura C A. Radar wake vortex measurements at F and I band[C]. Proceedings of IEE Colloquium on Radar and Microwave Imaging, London, 1994: 7/1–7/5.
    [17] 王首勇, 万洋, 刘俊凯, 等, 著. 现代雷达目标检测理论与方法[M]. 第2版, 北京: 科学出版社, 2015.

    Wang Shou-yong, Wan Yang, Liu Jun-kai, et al.. Modern Radar Target Detection Theory and Methods[M]. Second Edition, Beijing: Science Press, 2015.
    [18] Calvo M and Oller J M. An explicit solution of information geodesic equations for the multivariate normal model[J]. Statistics&Risk Modeling, 1991, 9(1/2): 119–138.
  • 加载中
图(9)
计量
  • 文章访问数:  2649
  • HTML全文浏览量:  648
  • PDF下载量:  522
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-15
  • 修回日期:  2017-07-24
  • 网络出版日期:  2017-12-28

目录

    /

    返回文章
    返回