基于高斯混合聚类的阵列干涉SAR三维成像

李杭 梁兴东 张福博 吴一戎

李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630–639. DOI: 10.12000/JR17020
引用本文: 李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630–639. DOI: 10.12000/JR17020
Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020
Citation: Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020

基于高斯混合聚类的阵列干涉SAR三维成像

DOI: 10.12000/JR17020
基金项目: 国家部委基金
详细信息
    作者简介:

    李杭:李   杭(1989–),男,江苏人,学士,中国科学技术大学;博士生,中国科学院电子学研究所;研究方向为阵列干涉SAR高精度3维成像。E-mail: aaronli@mail.ustc.edu.cn

    梁兴东(1973–),男,陕西人,博士,北京理工大学;研究员,中国科学院电子学研究所;研究方向为高分辨率合成孔径雷达系统、干涉合成孔径雷达、成像处理及应用、实时数字信号处理。E-mail: xdliang@mail.ie.ac.cn

    张福博(1988–),男,河北人,博士,中国科学院电子学研究所;助理研究员,研究方向为多通道SAR 3维重建、新体制雷达、阵列雷达信号处理。E-mail: zhangfubo8866@126.com

    吴一戎(1963–),男,安徽人,博士,中国科学院电子学研究所;研究员,中国科学院院士,中国科学院电子学研究所;研究方向为微波成像理论、微波成像技术和雷达信号处理。E-mail: wyr@mail.ie.ac.cn

    通讯作者:

    梁兴东   xdliang@mail.ie.ac.cn

  • 中图分类号: TN957.52

3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering

Funds: The National Ministries Foundation
  • 摘要:

    阵列干涉SAR具备高程分辨能力,单次航过即可生成观测场景的3维点云分布,解决叠掩问题。但是,由于阵列干涉SAR阵元数目有限、基线长度较短,高程向分辨率受到限制,加之城区建筑物的叠掩现象,常规方法重建结果定位精度较差,难以提取建筑物有效特征。针对这个问题,该文提出了一种基于高斯混合聚类的阵列干涉SAR 3维成像方法,首先通过基于压缩感知(Compressive Sensing, CS)的超分辨算法获得场景区域的3维点云分布,然后利用密度估计方法提取出建筑物的散射点,之后使用高斯混合模型(Gaussian Mixture Model, GMM)对建筑物3维点云进行聚类,最后利用系统参数完成各个区域的SAR图像反演,实现建筑物的3维成像。通过国内首次机载阵列干涉SAR实验的实际数据,验证了该文算法的有效性,并获得了真实的建筑物3维成像结果。

     

  • 图  1  阵列干涉SAR成像模型

    Figure  1.  Array InSAR imaging model

    图  2  观测场景光学图像

    Figure  2.  Optical image of the observed scene

    图  3  观测场景原始3维点云

    Figure  3.  Orginal 3D point clouds of the observed scene

    图  4  算法流程图

    Figure  4.  Workflow of proposed approach

    图  5  观测场景散射点密度图

    Figure  5.  Scatterer density map of the observed scene

    图  6  观测场景建筑物提取结果

    Figure  6.  Extracted building results of the observed scene

    图  7  不同窗口/阈值性能曲线图

    Figure  7.  Performance curve map with varying TH and GA parameters

    图  8  子类个数与偏差度关系图

    Figure  8.  Dispersion plot with number of clusters

    图  9  建筑物区域聚类结果

    Figure  9.  Clustered result of building areas

    图  10  K-means聚类结果

    Figure  10.  Clustered results of K-means

    图  11  各区域反演SAR图像

    Figure  11.  Inversed SAR images of all aeras

    图  12  地面区域SAR图像

    Figure  12.  Inversed SAR images of the ground

    图  13  观测场景2维SAR图像

    Figure  13.  2D SAR image of the observed scene

    图  14  观测场景干涉相位图

    Figure  14.  Interferometric phase image of the observed scene

    图  15  观测场景3维成像结果

    Figure  15.  3D imaging result of the observed scene

    表  1  阵列干涉SAR系统参数

    Table  1.   System parameters of array InSAR

    项目参数
    载频(GHz)15
    发射信号带宽(MHz)500
    脉冲重复频率(kHz)1
    载机高度(m)600
    飞行速度(m/s)70
    方位波束宽度(°)2
    距离波束宽度(°)27
    中心下视角(°)25
    下载: 导出CSV

    表  2  不同窗口/阈值质量评价表

    Table  2.   Quality evaluation with varying TH and GA parameters

    TH
    (点数/dm2)
    GA (dm2)
    1×12×23×34×45×5
    175.1274.8874.3771.8971.75
    281.2781.8681.7377.7178.07
    394.1293.8494.8294.6394.08
    487.4886.3286.4081.9877.56
    581.8984.7784.6878.2977.91
    667.2363.0267.1460.6251.83
    下载: 导出CSV
  • [1] Morishita Y and Hanssen R F. Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1096–1104. DOI: 10.1109/TGRS.2014.2333814.
    [2] 张福博. 阵列干涉SAR三维重建信号处理技术研究[D]. [博士论文], 中国科学院大学, 2015.

    Zhang Fubo. Research on signal processing of 3-D reconstruction in linear array Synthetic Aperture Radar interferometry[D]. [Ph.D.dissertation], Institute of Electronics, Chinese Acedamy of Science, 2015.
    [3] Knaell K K and Cardillo G P. Radar tomography for the generation of three-dimensional images[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54–60. DOI: 10.1049/ip-rsn:19951791.
    [4] Wang Bin, Wang Yanping, Hong Wen, et al.. Application of spatial spectrum estimation technique in multibaseline SAR for layover solution[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: III-1139–III-1142.
    [5] 王爱春, 向茂生. 基于块压缩感知的SAR层析成像方法[J]. 雷达学报, 2016, 5(1): 57–64. DOI: 10.12000/JR16006.

    Wang Aichun and Xiang Maosheng. SAR tomography based on block compressive sensing[J]. Journal of Radars, 2016, 5(1): 57–64. DOI: 10.12000/JR16006.
    [6] Reigber A and Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. DOI: 10.1109/36.868873.
    [7] Zhu Xiaoxiang and Bamler R. Tomographic SAR inversion by L1-norm regularization—the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. DOI: 10.1109/TGRS.2010.2048117.
    [8] Zhu Xiaoxiang and Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. DOI: 10.1109/TGRS.2011.2160183.
    [9] Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction[C]. Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 2004, 2: 28–31.
    [10] Budillon A, Evangelista A, and Schirinzi G. Three-dimensional SAR focusing from multipass signals using compressive sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 488–499. DOI: 10.1109/TGRS.2010.2054099.
    [11] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. DOI: 10.1109/TIT.2006.871582.
    [12] 张福博, 梁兴东, 吴一戎. 一种基于地形驻点分割的多通道SAR三维重建方法[J]. 电子与信息学报, 2015, 37(10): 2287–2293. DOI: 10.11999/JEIT150244.

    Zhang Fu-bo, Liang Xing-dong, and Wu Yi-rong. 3-D reconstruction for multi-channel SAR interferometry using terrain stagnation point based division[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2287–2293. DOI: 10.11999/JEIT150244.
    [13] 廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 123–129. DOI: 10.12000/JR15031.

    Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, et al. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 123–129. DOI: 10.12000/JR15031.
    [14] Zhu Xiaoxiang and Shahzad M. Facade reconstruction using multiview spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3541–3552. DOI: 10.1109/TGRS.2013.2273619.
    [15] Sithole G and Vosselman G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1-2): 85–101. DOI: 10.1016/j.isprsjprs.2004.05.004.
    [16] Vosselman G. Slope based filtering of laser altimetry data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B3/2), Part 3: 935–942.
    [17] Rottensteiner F and Briese C. A new method for building extraction in urban areas from high-resolution LIDAR data[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(3/A): 295–301.
    [18] Vrieze S I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)[J]. Psychological Methods, 2012, 17(2): 228–243. DOI: 10.1037/a0027127.
    [19] Moon T K. The expectation-maximization algorithm[J]. IEEE Signal Processing Magazine, 1996, 13(6): 47–60. DOI: 10.1109/79.543975.
    [20] Sampath A and Shan Jie. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1554–1567. DOI: 10.1109/TGRS.2009.2030180.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  3243
  • HTML全文浏览量:  740
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-04-10
  • 网络出版日期:  2017-12-01

目录

    /

    返回文章
    返回