基于四阶累积量的机载多基线SAR谱估计解叠掩方法

张斌 韦立登 胡庆荣 李爽

张斌, 韦立登, 胡庆荣, 李爽. 基于四阶累积量的机载多基线SAR谱估计解叠掩方法[J]. 雷达学报, 2018, 7(6): 740-749. doi: 10.12000/JR18087
引用本文: 张斌, 韦立登, 胡庆荣, 李爽. 基于四阶累积量的机载多基线SAR谱估计解叠掩方法[J]. 雷达学报, 2018, 7(6): 740-749. doi: 10.12000/JR18087
Zhang Bin, Wei Lideng, Hu Qingrong, Li Shuang. Solution to Layover Problemin Airborne Multi-baseline SAR Based on Spectrum Estimation with Fourth-order Cumulant[J]. Journal of Radars, 2018, 7(6): 740-749. doi: 10.12000/JR18087
Citation: Zhang Bin, Wei Lideng, Hu Qingrong, Li Shuang. Solution to Layover Problemin Airborne Multi-baseline SAR Based on Spectrum Estimation with Fourth-order Cumulant[J]. Journal of Radars, 2018, 7(6): 740-749. doi: 10.12000/JR18087

基于四阶累积量的机载多基线SAR谱估计解叠掩方法

DOI: 10.12000/JR18087
基金项目: 国家科技部重点项目
详细信息
    作者简介:

    张 斌(1990–),男,博士生,研究方向为机载InSAR处理与TomoSAR技术。E-mail: zbhian123@163.com

    韦立登(1973–),男,研究员,研究方向为机载SAR成像与InSAR处理

    胡庆荣(1974–),男,研究员,研究方向为雷达总体技术与机载SAR成像

    李 爽(1982–),女,高级工程师,研究方向为星载InSAR仿真与数据处理

    通讯作者:

    张斌   zbhian123@163.com

  • 中图分类号: TN957.52

Solution to Layover Problemin Airborne Multi-baseline SAR Based on Spectrum Estimation with Fourth-order Cumulant

Funds: Key Projects of the Ministry of Science and Technology of China
  • 摘要: 叠掩问题是SAR成像处理的一个技术难点,在机载多基线SAR系统中,传统的谱估计解叠掩方法受到非均匀基线和基线数目少的限制,使得其在解叠掩过程中的散射点高度向测量误差大、分辨性能差。针对以上问题,该文将4阶累积量统计特性用于传统的谱估计解叠掩方法中,利用4阶累积量的盲高斯性和非均匀阵列的虚拟阵列扩展性能,结合传统的Capon, MUSIC谱估计方法,能在有效去除高斯噪声的同时,提高叠掩处各散射点的高度向测量精度及分辨率。仿真和实测数据实验证明了该文方法的有效性。

     

  • 图  1  多基线SAR叠掩成像模型

    Figure  1.  Layover model of multi-baseline SAR

    图  2  散射点高度估计随SNR变化结果

    Figure  2.  Height estimation results via SNR

    图  3  散射点高度估计随视数变化结果

    Figure  3.  Height estimation results via number of looks

    图  4  散射点高度估计随高度差变化结果

    Figure  4.  Height estimation results via height differences

    图  5  高度-归一化谱分布

    Figure  5.  Height-normalized spectral distribution

    图  6  原始数据图

    Figure  6.  Raw SAR data

    图  7  图像散射点个数

    Figure  7.  Numbers of scattering points

    图  8  高度-归一化谱函数

    Figure  8.  Height-normalized spectral distribution

    图  9  剖面散射点高度分布图

    Figure  9.  Height profile of scattering points

    图  10  叠掩处散射点高度差统计

    Figure  10.  Height difference statistics of scattering points in layover

    表  1  系统仿真参数

    Table  1.   System parameters of simulation data

    传感器 MEMPHIS
    载频(GHz) 35
    下视角 $\theta $(°) 60
    基线长度(m) 0, 0.055, 0.165, 0.275
    斜距(m) 1545
    SNR(dB) 20
    基线倾角 $\alpha $(°) 60
    下载: 导出CSV
  • [1] Magnard C, Frioud M, Small D, et al. Analysis of a maximum likelihood phase estimation method for airborne multibaseline SAR interferometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1072–1085. DOI: 10.1109/JSTARS.2015.2487685
    [2] Schmitt M and Zhu X X. Demonstration of single-pass millimeterwave SAR tomography for forest volumes[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 202–206. DOI: 10.1109/LGRS.2015.2506150
    [3] 徐西桂, 庞蕾, 张学东, 等. 多基线层析SAR技术的研究现状分析[J]. 测绘通报, 2018(1): 14–21. DOI: 10.13474/j.cnki.11-2246.2018.0003

    Xu Xi-gui, Pang Lei, Zhang Xue-dong, et al. The research status analysis on multi-baseline tomographic SAR[J]. Bulletin of Surveying and Mapping, 2018(1): 14–21. DOI: 10.13474/j.cnki.11-2246.2018.0003
    [4] Gini F, Lombardini F, and Montanari M. Layover solution in multibaseline SAR interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1344–1356. DOI: 10.1109/TAES.2002.1145755
    [5] Lombardini F, Cai F, and Pasculli D. Spaceborne 3-D SAR tomography for analyzing garbled urban scenarios: Single-look superresolution advances and experiments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 960–968. DOI: 10.1109/JSTARS.2012.2211339
    [6] Fornaro G, Lombardini F, Pauciullo A, et al.. Advanced interferometric and 3-/4-/5-D tomographic processing of SAR data[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1432–1435.
    [7] Zhu X X and Bamler R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4296–4308. DOI: 10.1109/TGRS.2010.2050487
    [8] Huang Y, Ferro-Famil A, and Reigber A. Under-foliage object imaging using SAR tomography and polarimetric spectral estimators[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2213–2225. DOI: 10.1109/TGRS.2011.2171494
    [9] 张福博, 刘梅. 基于频域最小二乘APES的非均匀多基线SAR层析成像算法[J]. 电子与信息学报, 2012, 34(7): 1568–1573. DOI: 10.3724/SP.J.1146.2011.01184

    Zhang Fu-bo and Liu Mei. Uneven multi-baseline SAR tomography base on frequency domain least squares amplitude and phase estimation (APES)[J]. Journal of Electronics&Information Technology, 2012, 34(7): 1568–1573. DOI: 10.3724/SP.J.1146.2011.01184
    [10] Schmitt M and Stilla U. Maximum-likelihood-based approach for single-pass synthetic aperture radar tomography over urban areas[J]. IET Radar,Sonar&Navigation, 2014, 8(9): 1145–1153. DOI: 10.1049/iet-rsn.2013.0378
    [11] Baselice F, Budillon A, Ferraioli G, et al. Layover solution in SAR imaging: A statistical approach[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 577–581. DOI: 10.1109/LGRS.2009.2021489
    [12] Budillon A, Evangelista A, and Schirinzi G. Three-dimensional SAR focusing from multipass signals using compressive sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 488–499. DOI: 10.1109/TGRS.2010.2054099
    [13] Zhu X X and Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. DOI: 10.1109/TGRS.2011.2160183
    [14] Wang X, Xu F, and Jin Y Q. The iterative reweighted alternating direction method of multipliers for separating structural layovers in SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1883–1887. DOI: 10.1109/LGRS.2017.2694825
    [15] 李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166–2172. DOI: 10.3724/SP.J.1146.2013.01645

    Li Lie-chen and Li Dao-jing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics&Information Technology, 2014, 36(9): 2166–2172. DOI: 10.3724/SP.J.1146.2013.01645
    [16] 王爱春, 向茂生. 基于块压缩感知的SAR层析成像方法[J]. 雷达学报, 2016, 5(1): 57–64. DOI: 10.12000/JR16006

    Wang Ai-chun and Xiang Mao-sheng. SAR tomography based on block compressive sensing[J]. Journal of Radars, 2016, 5(1): 57–64. DOI: 10.12000/JR16006
    [17] 赵克祥, 毕辉, 张冰尘. 基于快速阈值迭代的SAR层析成像处理方法[J]. 系统工程与电子技术, 2017, 39(5): 1019–1023. DOI: 10.3969/j.issn.1001-506X.2017.05.11

    Zhao Ke-xiang, Bi Hui, and Zhang Bing-chen. SAR tomography method based on fast iterative shrinkage-thresholding[J]. Systems Engineering and Electronics, 2017, 39(5): 1019–1023. DOI: 10.3969/j.issn.1001-506X.2017.05.11
    [18] Bu Y C, Liang X D, Wang Y, et al. A unified algorithm for channel imbalance and antenna phase center position calibration of a single-pass multi-baseline TomoSAR system[J]. Remote Sensing, 2018, 10(3): 456. DOI: 10.3390/rs10030456
    [19] 张小飞, 陈华伟, 仇小锋, 等. 阵列信号处理及MATLAB实现[M]. 北京: 电子工业出版社, 2015: 22–27.

    Zhang Xiao-fei, Chen Hua-wei, Qiu Xiao-feng, et al.. Array Signal Processing and Matlab Implementation[M]. Beijing: Publishing House of Electronics Industry, 2015: 22–27.
    [20] Dogan M C and Mendel J M. Applications of cumulants to array processing. I. Aperture extension and array calibration[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1200–1216. DOI: 10.1109/78.382404
    [21] Schmitt M and Stilla U. Compressive sensing based layover separation in airborne single-pass multi-baseline InSAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 313–317. DOI: 10.1109/LGRS.2012.2204230
    [22] 韩树楠, 李东生, 雍爱霞, 等. 四阶累积量稀疏表示的DOA估计方法[J]. 信号处理, 2015, 31(3): 314–318. DOI: 10.3969/j.issn.1003-0530.2015.03.009

    Han Shu-nan, Li Dong-sheng, Yong Ai-xia, et al. DOA estimation method by sparse representation of fourth-order cumulants[J]. Journal of Signal Processing, 2015, 31(3): 314–318. DOI: 10.3969/j.issn.1003-0530.2015.03.009
    [23] 陈建, 王树勋. 基于高阶累积量虚拟阵列扩展的DOA估计[J]. 电子与信息学报, 2007, 29(5): 1041–1044

    Chen Jian and Wang Shu-xun. DOA estimation of virtual array extension based on fourth-order cumulant[J]. Journal of Electronics&Information Technology, 2007, 29(5): 1041–1044
    [24] Zhang X F, Lv W, Shi Y, et al.. A novel DOA estimation algorithm based on Eigen space[C]. Proceedings of 2007 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China, 2007: 551–554.
    [25] Bamler R, Eineder M, Adam N, et al. Interferometric potential of high resolution spaceborne SAR[J]. Photogrammetrie-Fernerkundung-Geoinformation, 2009, 2009(5): 407–419. DOI: 10.1127/1432-8364/2009/0029
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2812
  • HTML全文浏览量:  537
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2018-12-11
  • 网络出版日期:  2018-12-28

目录

    /

    返回文章
    返回