扫描MIMO阵列近场三维成像技术

高敬坤 邓彬 秦玉亮 王宏强 黎湘

高敬坤, 邓彬, 秦玉亮, 王宏强, 黎湘. 扫描MIMO阵列近场三维成像技术[J]. 雷达学报, 2018, 7(6): 676-684. doi: 10.12000/JR18102
引用本文: 高敬坤, 邓彬, 秦玉亮, 王宏强, 黎湘. 扫描MIMO阵列近场三维成像技术[J]. 雷达学报, 2018, 7(6): 676-684. doi: 10.12000/JR18102
Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array[J]. Journal of Radars, 2018, 7(6): 676-684. doi: 10.12000/JR18102
Citation: Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array[J]. Journal of Radars, 2018, 7(6): 676-684. doi: 10.12000/JR18102

扫描MIMO阵列近场三维成像技术

DOI: 10.12000/JR18102
基金项目: 国家自然科学基金(61871386, 61701513, 61571011)
详细信息
    作者简介:

    高敬坤(1992–),男,山东梁山人,博士生,研究方向为雷达成像与信号处理。E-mail: oscar92923@163.com

    邓 彬(1981–),男,山东邹城人,副研究员,研究方向为合成孔径雷达、太赫兹雷达微动与成像

    秦玉亮(1980–),男,山东潍坊人,副研究员,研究方向为太赫兹雷达、雷达关联成像与电磁涡旋

    王宏强(1970–),男,陕西宝鸡人,研究员,973技术首席,原863太赫兹专家,研究方向为太赫兹雷达、雷达信号处理与自动目标识别等

    黎 湘(1967–),男,湖南浏阳人,教授,长江学者特聘教授,研究方向为目标探测识别与雷达成像等

    通讯作者:

    高敬坤   oscar92923@163.com

  • 中图分类号: TN95

Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array

Funds: The National Natural Science Foundation of China (61871386, 61701513, 61571011)
  • 摘要: 基于扫描阵列的近场3维成像是合成孔径雷达(SAR)3维成像技术在民用领域的一种重要应用形式。“多发多收(MIMO)-扫描”体制是该领域一种独特的成像方式。相比于“单发单收(SISO)”阵列,MIMO阵列具有成像质量好、阵元利用率高、对天线间隔要求宽松以及成本低等特点。该文分别从信号模型、成像算法、实验系统和成像结果等方面介绍了“MIMO-平面扫”和“MIMO-柱面扫”两种成像体制。所得结果充分展现了该成像技术在许多场景中的巨大应用潜力。

     

  • 图  1  MIMO线阵平面扫描坐标定义

    Figure  1.  Coordinates definitions for the “MIMO-planar scanning” regime

    图  2  “MIMO-平面扫”实验原理框图

    Figure  2.  Experimental setup for the “MIMO-planar scanning” regime

    图  3  多功能2维扫描架照片

    Figure  3.  Photograph of the multi-functional 2D-scanner

    图  4  两类实物目标模型照片

    Figure  4.  Photographs of two targets

    图  5  “MIMO-平面扫”实验采用的两种阵列构型

    Figure  5.  Two array topologies for the “MIMO-planar scanning” experiments

    图  6  “MIMO-平面扫”实验成像结果

    Figure  6.  Experimental imaging results of the “MIMO-planar scanning” regime

    图  7  MIMO线阵柱面扫描坐标定义

    Figure  7.  Coordinates definitions for the “MIMO-cylindrical scanning” regime

    图  8  “MIMO-柱面扫”仿真成像阵列构型

    Figure  8.  Array topology for the “MIMO-cylindrical scanning” simulation

    图  9  柱面观测孔径及仿真用目标模型

    Figure  9.  Cylindrical observation aperture and the human body model

    图  10  人体模型电磁计算成像结果

    Figure  10.  Imaging results of the human body with electromagnetic calculation data

    图  11  “MIMO-柱面扫”实验原理框图

    Figure  11.  Experimental setup for the “MIMO-cylindrical scanning” regime

    图  12  “MIMO-柱面扫”实验场景

    Figure  12.  Experimental scenario for the “MIMO-cylindrical scanning” regime

    图  13  “MIMO-柱面扫”实验用阵列构型

    Figure  13.  Array topology for the “MIMO-cylindrical scanning” experiment

    图  14  “MIMO-柱面扫”实验成像结果

    Figure  14.  Experimental imaging results of the “MIMO-cylindrical scanning” regime

  • [1] 吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展(科普类)[J]. 雷达学报, 2014, 3(4): 383–396. DOI: 10.3724/SP.J.1300.2014.14105

    Wu Yi-rong, Hong Wen, Zhang Bing-chen, et al. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383–396. DOI: 10.3724/SP.J.1300.2014.14105
    [2] Bi H, Liu J G, Zhang B C, et al. Baseline distribution optimization and missing data completion in wavelet-based CS-TomoSAR[J]. Science China Information Sciences, 2018, 61(4): 042302. DOI: 10.1007/s11432-016-9068-y
    [3] Bao Q, Peng X M, Wang Z R, et al. DLSLA 3-D SAR imaging based on reweighted gridless sparse recovery method[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 841–845. DOI: 10.1109/LGRS.2016.2550057
    [4] 谭维贤, 洪文, 王彦平, 等. 基于波数域积分的人体表面微波三维成像算法研究[J]. 电子与信息学报, 2009, 31(11): 2541–2545. DOI: 10.3724/SP.J.1146.2008.01671

    Tan Wei-xian, Hong Wen, Wang Yan-ping, et al. Three-dimensional microwave imaging algorithm for the surface of the human body based on wavenumber domain integration[J]. Journal of Electronics&Information Technology, 2009, 31(11): 2541–2545. DOI: 10.3724/SP.J.1146.2008.01671
    [5] Qi Y L, Wang Y P, Peng X M, et al. Application of optimized sparse antenna array in near range 3D microwave imaging[J]. IEICE Transactions on Communications, 2013, E96.B(10): 2542–2552.
    [6] 徐枫, 朱莉, 刘敏. 近程毫米波全息成像技术发展综述[J]. 微波学报, 2017, 33(S1): 289–294

    Xu Feng, Zhu Li, and Liu Min. Reviews of short range millimeter wave holographic imaging technology[J]. Journal of Microwaves, 2017, 33(S1): 289–294
    [7] 王武, 陆必应, 孙鑫, 等. 基于RMA的三维成像与二维MIMO阵设计[J]. 现代雷达, 2016, 38(2): 38–42, 65. DOI: 10.16592/j.cnki.1004-7859.2016.02.009

    Wang Wu, Lu Bi-ying, Sun Xin, et al. 3-D imaging and 2-D MIMO arrays design based on range migration algorithm[J]. Modern Radar, 2016, 38(2): 38–42, 65. DOI: 10.16592/j.cnki.1004-7859.2016.02.009
    [8] 乔灵博, 王迎新, 赵自然, 等. 主动式近距离太赫兹人体安检技术分析[J]. 微波学报, 2015, 31(4): 93–96. DOI: 10.14183/j.cnki.1005-6122.201504019

    Qiao Ling-bo, Wang Ying-xin, Zhao Zi-ran, et al. Analysis of active near-field terahertz imaging for personnel surveillance[J]. Journal of Microwaves, 2015, 31(4): 93–96. DOI: 10.14183/j.cnki.1005-6122.201504019
    [9] 年丰, 温鑫, 杨于杰, 等. 近场C-SAR成像系统关键技术研究[J]. 现代防御技术, 2012, 40(6): 1–4, 18. DOI: 10.3969/j.issn.1009-086x.2012.06.001

    Nian Feng, Wen Xin, Yang Yu-jie, et al. Key technologies of near field C-SAR imaging system[J]. Modern Defense Technology, 2012, 40(6): 1–4, 18. DOI: 10.3969/j.issn.1009-086x.2012.06.001
    [10] 王子野, 乔灵博, 王迎新, 等. 高分辨力亚毫米波全息成像系统[J]. 太赫兹科学与电子信息学报, 2016, 14(6): 833–837. DOI: 10.11805/TKYDA201606.0833

    Wang Zi-ye, Qiao Ling-bo, Wang Ying-xin, et al. Wide-band three-dimensional submillimeter-wave holographic imaging system[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(6): 833–837. DOI: 10.11805/TKYDA201606.0833
    [11] Farhat N H and Guard W R. Millimeter wave holographic imaging of concealed weapons[J]. Proceedings of the IEEE, 1971, 59(9): 1383–1384. DOI: 10.1109/PROC.1971.8441
    [12] 朱莉, 李兴国, 王本庆. 近程毫米波全息成像算法[J]. 系统工程与电子技术, 2011, 33(12): 2577–2581. DOI: 10.3969/j.issn.1001-506X.2011.12.02

    Zhu Li, Li Xing-guo, and Wang Ben-qing. Short-range millimeter wave holographic imaging algorithm[J]. Systems Engineering and Electronics, 2011, 33(12): 2577–2581. DOI: 10.3969/j.issn.1001-506X.2011.12.02
    [13] 赵磊, 黄昆, 郝鑫, 等. 近场雷达成像非均匀稀疏阵设计[J]. 太赫兹科学与电子信息学报, 2017, 15(5): 707–710. DOI: 10.11805/TKYDA201705.0707

    Zhao Lei, Huang Kun, Hao Xin, et al. Non-uniform sparse array design in near field radar imaging[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(5): 707–710. DOI: 10.11805/TKYDA201705.0707
    [14] 吴世有, 高航, 李超, 等. 太赫兹MIMO弧形阵列方位向成像算法研究[J]. 电子与信息学报, 2018, 40(4): 860–866. DOI: 10.11999/JEIT170630

    Wu Shi-you, Gao Hang, Li Chao, et al. Research on MIMO THz azimuth imaging algorithm based on arc antenna array[J]. Journal of Electronics&Information Technology, 2018, 40(4): 860–866. DOI: 10.11999/JEIT170630
    [15] 杨啸宇, 高敬坤, 邓彬, 等. 基于GPU的毫米波雷达近场阵列成像技术研究[J]. 电子测量技术, 2018, 41(11): 15–19

    Yang Xiao-yu, Gao Jing-kun, Deng Bin, et al. Research on near field array imaging in the millimeter band based on GPU[J]. Electronic Measurement Technology, 2018, 41(11): 15–19
    [16] Zhang Y, Deng B, Yang Q, et al. Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm[J]. Sensors, 2017, 17: 2438. DOI: 10.3390/s17102438
    [17] Moulder W F, Krieger J D, Majewski J J, et al.. Development of a high-throughput microwave imaging system for concealed weapons detection[C]. Proceedings of 2016 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, USA, 2016: 1–6. DOI: 101109/ARRAY.2016.7832573.
    [18] Zhuge X and Yarovoy A G. A sparse aperture MIMO-SAR-Based UWB imaging system for concealed weapon detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 509–518. DOI: 10.1109/TGRS.2010.2053038
    [19] Gumbmann F and Schmidt L P. Millimeter-wave imaging with optimized sparse periodic array for short-range applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3629–3638. DOI: 10.1109/TGRS.2011.2164616
    [20] Sheen D, McMakin D, and Hall T. Near-field three-dimensional radar imaging techniques and applications[J]. Applied Optics, 2010, 49(19): E83–E93. DOI: 10.1364/AO.49.000E83
    [21] Sheen D M, McMakin D L, and Hall T E. Three-dimensional millimeter-wave imaging for concealed weapon detection[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(9): 1581–1592. DOI: 10.1109/22.942570
    [22] Zhuge X and Yarovoy A G. Three-dimensional near-field MIMO array imaging using range migration techniques[J]. IEEE Transactions on Image Processing, 2012, 21(6): 3026–3033. DOI: 10.1109/TIP.2012.2188036
    [23] 王武. 近场MIMO雷达三维成像技术[D]. [硕士论文], 国防科学技术大学, 2015.

    Wang Wu. 3D Near-field imaging using MIMO radar[D]. [Master dissertation], National University of Defense Technology, 2015.
    [24] Ahmed S S, Genghammer A, Schiessl A, et al. Fully electronic E-band personnel imager of 2 m2 aperture based on a multistatic architecture[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 651–657. DOI: 10.1109/TMTT.2012.2228221
    [25] Ahmed S S, Schiessl A, Gumbmann F, et al. Advanced microwave imaging[J]. IEEE Microwave Magazine, 2012, 13(6): 26–43. DOI: 10.1109/MMM.2012.2205772
    [26] Tan K, Wu S Y, Wang Y C, et al. On sparse MIMO planar array topology optimization for UWB near-field high-resolution imaging[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 989–994. DOI: 10.1109/TAP.2016.2632626
    [27] Baccouche B, Agostini P, Mohammadzadeh S, et al. 3D terahertz imaging with sparse multistatic line arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 8501411. DOI: 10.1109/JSTQE.2017.2673552
    [28] Gao J K, Qin Y L, Deng B, et al. Novel efficient 3D short-range imaging algorithms for a scanning 1D-MIMO array[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3631–3643. DOI: 10.1109/TIP.2018.2821925
    [29] Gao J K, Deng B, Qin Y L, et al. An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(11): 5065–5074. DOI: 1109/TMTT.2018.2859269
    [30] Gao J K, Qin Y L, Deng B, et al. Terahertz wide-angle imaging and analysis on plane-wave criteria based on inverse synthetic aperture techniques[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2016, 37(4): 373–393. DOI: 10.1007/s10762-016-0249-x
    [31] Vaupel T and Eibert T F. Comparison and application of near-field ISAR imaging techniques for far-field Radar cross section determination[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 144–151. DOI: 10.1109/TAP.2005.861549
  • 加载中
图(14)
计量
  • 文章访问数:  5090
  • HTML全文浏览量:  2133
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-28
  • 修回日期:  2018-12-16
  • 网络出版日期:  2018-12-28

目录

    /

    返回文章
    返回