一种基于测地线距离的极化SAR图像快速超像素分割算法

邹焕新 李美霖 曹旭 李润林 秦先祥

邹焕新, 李美霖, 曹旭, 等. 一种基于测地线距离的极化SAR图像快速超像素分割算法[J]. 雷达学报, 2021, 10(1): 20–34. doi: 10.12000/JR20121
引用本文: 邹焕新, 李美霖, 曹旭, 等. 一种基于测地线距离的极化SAR图像快速超像素分割算法[J]. 雷达学报, 2021, 10(1): 20–34. doi: 10.12000/JR20121
ZOU Huanxin, LI Meilin, CAO Xu, et al. Superpixel segmentation for PolSAR images based on geodesic distance[J]. Journal of Radars, 2021, 10(1): 20–34. doi: 10.12000/JR20121
Citation: ZOU Huanxin, LI Meilin, CAO Xu, et al. Superpixel segmentation for PolSAR images based on geodesic distance[J]. Journal of Radars, 2021, 10(1): 20–34. doi: 10.12000/JR20121

一种基于测地线距离的极化SAR图像快速超像素分割算法

DOI: 10.12000/JR20121
基金项目: 国家自然科学基金(62071474, 41601436)
详细信息
    作者简介:

    邹焕新(1973–),男,广东人,现任国防科技大学电子科学学院教授,硕士生导师,主要研究方向为SAR图像解译、多源信息融合、计算机视觉、图像处理、模式识别等。E-mail: hxzou2008@163.com

    李美霖(1995–),女,山西人,现为国防科技大学电子科学学院博士生,主要研究方向为极化SAR图像解译、模式识别等。E-mail: limeilin@nudt.edu.cn

    曹 旭(1996–),男,天津人,现为国防科技大学电子科学学院硕士生,主要研究方向为SAR图像和光学图像目标检测分类与识别。E-mail: 1135459767@qq.com

    李润林(1995–),男,新疆人,现为国防科技大学电子科学学院硕士生,主要研究方向为SAR图像和光学图像目标检测分类与识别。E-mail: lrl1995@vip.qq.com

    秦先祥(1986–),男,广西人,现任空军工程大学信息与导航学院讲师,主要研究方向为SAR图像解译。E-mail: qinxianxiang@126.com

    通讯作者:

    邹焕新 hxzou2008@163.com

  • 责任主编:殷君君 Corresponding Editor: YIN Junjun
  • 中图分类号: TN957

Superpixel Segmentation for PolSAR Images Based on Geodesic Distance

Funds: The National Natural Science Foundation of China (62071474, 41601436)
More Information
  • 摘要: 针对传统的极化SAR(PolSAR)图像超像素分割算法中采用的距离度量对相似性表征能力不足的问题,该文提出了一种基于测地线距离的极化SAR图像快速超像素分割算法。首先,对图像进行正六边形初始化与不稳定点初始化;其次,利用实对称Kennaugh矩阵之间的测地线距离来度量当前不稳定点与其搜索范围内其他聚类中心点之间的相似度,以便更准确地为当前不稳定点分配标签,从而快速减少不稳定点的数量;最后,利用后处理步骤消除孤立像素点以生成最终的超像素。利用仿真极化SAR数据验证了初始化方法的有效性和测地线距离度量的高效性,并利用仿真和实测数据将该文算法与其他4种算法进行对比分析。实验结果表明,该文方法生成的超像素具有更规则的形状并且能够准确地贴合真实地物边缘,同时具有更高的运算效率。

     

  • 图  1  本文算法框架流程图

    Figure  1.  The flowchart of the proposed method

    图  2  正六边形初始化示意图

    Figure  2.  Distribution of cluster centers

    图  3  两种初始化方法的示意图

    Figure  3.  The sketch map of unstable pixels initialization of two methods

    图  4  仿真极化SAR图像

    Figure  4.  The simulated PolSAR image

    图  5  Flevoland实测极化SAR数据的Pauli-RGB图像

    Figure  5.  The Pauli-RGB image of the Flevoland real-world PolSAR data

    图  6  基于不同初始化方法的实验结果

    Figure  6.  The results of different initialization methods

    图  7  基于两种不同距离度量方法的实验结果

    Figure  7.  The results of two different distance measure

    图  8  FHAWS算法与FHAGS算法在S=10时的实验结果图

    Figure  8.  The results of FHAWS method and FHAGS method with S=10

    图  9  5种算法基于仿真极化SAR图像的结果图

    Figure  9.  The results of five comparison methods

    10  5种算法的超像素分割结果图

    10.  The generated superpixels of the five comparison methods

    图  11  图10标记区域A的放大图

    Figure  11.  The enlarged superpixel results for region A of Fig. 10

    图  12  图10标记区域B的放大图

    Figure  12.  The enlarged superpixel results for region B of Fig. 10

    图  13  图10标记区域C的实验结果图

    Figure  13.  The superpixel results for region C of Fig. 10

    表  1  5种算法基于区域A的4种评价度量

    Table  1.   Four criteria of five methods for the region A of the real-world PolSAR image

    算法BRUSEASA运行时间(s)
    POL-SLIC0.69580.25580.960058
    POL-LSC0.58720.22760.95935
    POL-IER0.77620.22680.960232
    FHAWS0.78680.20970.961133
    FHAGS0.73210.24150.959626
    下载: 导出CSV

    表  2  针对实测极化SAR数据的5种超像素分割算法的运行时间

    Table  2.   Running Time(s) of five superpixel generation methods for the real-world PolSAR image

    算法运行时间(s)分割后处理时间(s)总时间(s)
    POL-SLIC839124963
    POL-LSC371371
    POL-IER64165706
    FHAWS61866684
    FHAGS52364587
    下载: 导出CSV
  • [1] 邹焕新, 罗天成, 张月, 等. 基于组合条件随机场的极化SAR图像监督地物分类[J]. 雷达学报, 2017, 6(5): 541–553. doi: 10.12000/JR16109

    ZOU Huanxin, LUO Tiancheng, ZHANG Yue, et al. Combined conditional random fields model for supervised PolSAR images classification[J]. Journal of Radars, 2017, 6(5): 541–553. doi: 10.12000/JR16109
    [2] 邹焕新, 李美霖, 马倩, 等. 一种基于张量积扩散的非监督极化SAR图像地物分类方法[J]. 雷达学报, 2019, 8(4): 436–447. doi: 10.12000/JR19057

    ZOU Huanxin, LI Meilin, MA Qian, et al. An unsupervised PolSAR image classification algorithm based on tensor product graph diffusion[J]. Journal of Radars, 2019, 8(4): 436–447. doi: 10.12000/JR19057
    [3] STUTZ D, HERMANS A, and LEIBE B. Superpixels: An evaluation of the state-of-the-art[J]. Computer Vision and Image Understanding, 2018, 166: 1–27. doi: 10.1016/j.cviu.2017.03.007
    [4] LI Meilin, ZOU Huanxin, MA Qian, et al. Unsupervised classification of PolSAR image based on tensor product graph diffusion[C]. The Fourth International Workshop on Pattern Recognition, Nanjing, China, 2019: 11198.
    [5] TIRANDAZ Z, AKBARIZADEH G, and KAABI H. PolSAR image segmentation based on feature extraction and data compression using weighted neighborhood filter bank and hidden Markov random field-expectation maximization[J]. Measurement, 2020, 153: 107432. doi: 10.1016/j.measurement.2019.107432
    [6] SONG Wanying, LI Ming, ZHANG Peng, et al. Superpixel-based hybrid discriminative random field for fast PolSAR image classification[J]. IEEE Access, 2019, 7: 24547–24558. doi: 10.1109/ACCESS.2019.2899116
    [7] LIN Huiping, BAO Junliang, YIN Junjun, et al. Superpixel segmentation with boundary constraints for polarimetric SAR images[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6195–6198.
    [8] LANG Fengkai, YANG Jie, LI Deren, et al. Mean-shift-based speckle filtering of polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4440–4454. doi: 10.1109/TGRS.2013.2282036
    [9] LANG Fengkai, YANG Jie, YAN Shiyong, et al. Superpixel segmentation of polarimetric synthetic aperture radar (SAR) images based on generalized mean shift[J]. Remote Sensing, 2018, 10(10): 1592. doi: 10.3390/rs10101592
    [10] LIU Mingyu, TUZEL O, RAMALINGAM S, et al. Entropy rate superpixel segmentation[C]. CVPR 2011, Providence, USA, 2011: 2097–2104.
    [11] ZHANG Yuhang, HARTLEY R, MASHFORD J, et al. Superpixels via pseudo-Boolean optimization[C]. 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 1387–1394.
    [12] LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. TurboPixels: Fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2290–2297. doi: 10.1109/TPAMI.2009.96
    [13] NOCK R and NIELSEN F. Statistical region merging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1452–1458. doi: 10.1109/TPAMI.2004.110
    [14] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
    [15] LI Zhengqin and CHEN Jiansheng. Superpixel segmentation using linear spectral clustering[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1356–1363.
    [16] ZHU Song, CAO Danhua, JIANG Shixiong, et al. Fast superpixel segmentation by iterative edge refinement[J]. Electronics Letters, 2015, 51(3): 230–232. doi: 10.1049/el.2014.3379
    [17] FENG Jilan, CAO Zongjie, and PI Yiming. Polarimetric contextual classification of PolSAR images using sparse representation and superpixels[J]. Remote Sensing, 2014, 6(8): 7158–7181. doi: 10.3390/rs6087158
    [18] XIANG Deliang, NI W, ZHANG H, et al. Superpixel segmentation for PolSAR images with local iterative clustering and heterogeneous statistical model[C]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Wuhan, China, 2017: 499–506.
    [19] HOU Biao, YANG Chen, REN Bo, et al. Decomposition-feature-iterative-clustering-based superpixel segmentation for PolSAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1239–1243. doi: 10.1109/LGRS.2018.2833492
    [20] 张月, 邹焕新, 邵宁远, 等. 一种用于极化SAR图像的快速超像素分割算法[J]. 雷达学报, 2017, 6(5): 564–573. doi: 10.12000/JR17018

    ZHANG Yue, ZOU Huanxin, SHAO Ningyuan, et al. Fast superpixel segmentation algorithm for PolSAR images[J]. Journal of Radars, 2017, 6(5): 564–573. doi: 10.12000/JR17018
    [21] RATHA D, DE S, CELIK T, et al. Change detection in polarimetric SAR images using a geodesic distance between scattering mechanisms[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1066–1070. doi: 10.1109/LGRS.2017.2696158
    [22] RATHA D, BHATTACHARYA A, and FRERY A C. Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 151–155. doi: 10.1109/LGRS.2017.2778749
    [23] NAKAHARA M. Geometry, Topology and Physics[M]. 2nd ed. Boca Raton, USA: CRC Press, 2003.
    [24] 王雪松, 陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望[J]. 雷达学报, 2020, 9(2): 259–276. doi: 10.12000/JR19109

    WANG Xuesong and CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259–276. doi: 10.12000/JR19109
    [25] YOU Biao, YANG Jian, YIN Junjun, et al. Decomposition of the Kennaugh matrix based on a new norm[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 1000–1004. doi: 10.1109/LGRS.2013.2284336
    [26] QIN Fachao, GUO Jiming, and LANG Fengkai. Superpixel segmentation for polarimetric SAR imagery using local iterative clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 13–17. doi: 10.1109/LGRS.2014.2322960
    [27] VASILE G, TROUVÉ E, LEE J S, et al. Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1609–1621. doi: 10.1109/TGRS.2005.864142
    [28] QIN Xianxiang, ZOU Huanxin, ZHOU Shilin, et al. Simulation of spatially correlated PolSAR images using inverse transform method[J]. Journal of Applied Remote Sensing, 2015, 9(1): 095082. doi: 10.1117/1.JRS.9.095082
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  2168
  • HTML全文浏览量:  755
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-11-20
  • 网络出版日期:  2021-02-25

目录

    /

    返回文章
    返回