基于稀疏贝叶斯正则化的阵列SAR高分辨三维成像算法

闫敏 韦顺军 田博坤 张晓玲 师君

闫敏, 韦顺军, 田博坤, 张晓玲, 师君. 基于稀疏贝叶斯正则化的阵列SAR高分辨三维成像算法[J]. 雷达学报, 2018, 7(6): 705-716. doi: 10.12000/JR18067
引用本文: 闫敏, 韦顺军, 田博坤, 张晓玲, 师君. 基于稀疏贝叶斯正则化的阵列SAR高分辨三维成像算法[J]. 雷达学报, 2018, 7(6): 705-716. doi: 10.12000/JR18067
Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067
Citation: Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067

基于稀疏贝叶斯正则化的阵列SAR高分辨三维成像算法

DOI: 10.12000/JR18067
基金项目: 国家自然科学基金(61501098)、博士后面上基金(2015M570778)、高分青年基金(GFZX04061502)
详细信息
    作者简介:

    田博坤(1993–),男,河北沧州人,电子科技大学博士生,主要从事合成孔径雷达成像研究。E-mail: 3544348143@qq.com

    通讯作者:

    韦顺军   weishunjun@uestc.edu.cn

  • 中图分类号: TN957.5

LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization

Funds: The National Natural Science Foundation of China (61501098), The China Postdoctoral Science Foundation (2015M570778), the High Resolution Earth Observation Youth Foundation (GFZX04061502)
  • 摘要: 阵列合成孔径雷达(Linear Array Synthetic Aperture Radar, LASAR) 3维成像技术是一种具有重要潜在应用价值的雷达成像新体制,但受线阵天线及平台尺寸限制,传统匹配滤波成像算法难以实现LASAR高分辨3维成像。该文利用LASAR回波信号及观测目标的先验分布特性,提出了一种基于快速稀疏贝叶斯正则化重构的LASAR高分辨3维成像算法。该算法先结合贝叶斯估计准则及最大似然估计原理,构造LASAR目标重构的稀疏贝叶斯最小化代价函数;再利用迭代正则化方法求解联合范数最优化问题实现LASAR稀疏目标高分辨3维成像。另外,针对稀疏贝叶斯正则化成像运算量大的问题,结合位置预测快速成像思路,利用阈值分割算法对稀疏粗成像进行强目标提取,进而提升算法运算效率。仿真数据和实测数据验证了该文算法的有效性。

     

  • 图  1  LASAR正下视3维成像的几何模型

    Figure  1.  The geographic model of down-looking LASAR imaging

    图  2  快速SBR算法流程图

    Figure  2.  Fast SBR algorithm flow chart

    图  3  原始仿真场景

    Figure  3.  The simulated model

    图  4  点目标场景成像结果(左:全部数据;中:50%随机抽取数据;右:20%随机抽取数据)

    Figure  4.  The imaging results of the point targets scene (Left: all data; Middle: 50% randomly selected data; Right: 20% randomly selected data)

    图  5  飞机模型场景成像结果(左:全部数据;中:50%随机抽取数据;右:20%随机抽取数据)

    Figure  5.  The imaging results of the airplane model (Left: all data; Middle: 50% randomly selected data; Right: 20% randomly selected data)

    图  6  飞机模型成像评价结果

    Figure  6.  Airplane model imaging evaluation results

    图  7  地基等效LASAR成像实验

    Figure  7.  The ground-based LASAR experiment

    图  8  地基LASAR合成阵列平面及回波数据

    Figure  8.  The virtual array antenna and the echo of the ground-based LASAR

    图  9  实测数据成像结果(左:全部数据;中:50%随机抽取数据;右:20%随机抽取数据)

    Figure  9.  The imaging results of experimental data (Left: all data; Middle: 50% randomly selected data; Right: 20% randomly selected data)

    图  10  实测数据成像评价结果

    Figure  10.  Experimental data imaging evaluation results

    表  1  SBR算法

    Table  1.   SBR algorithm

     算法:SBR算法
     输入:测量信号 ${{{y}}_S}$,测量矩阵 ${{Θ}}$,迭代误差门限 $\gamma $
     输出:稀疏散射系数 $\hat {{α}}$
     初始化:估计值 ${\hat {{α}}^{\left( 0 \right)}} = {{{Θ}}^{\rm H}}{{{y}}_S}$, ${\hat \beta ^{\left( 0 \right)}} = {{\left\| {{{{y}}_S} - {{Θ}}{{\hat {{α}}}^{\left( 0 \right)}}} \right\|_2^2}\Bigr/N}$,
    ${{\hat \varepsilon } ^{\left( 0 \right)}} = {{\left\| {{{\hat {{α}}}^{\left( 0 \right)}}} \right\|_2^2}\Bigr/M}$,迭代次数 $n = 0$
     循环开始
     (1) 估计散射系数向量 ${\hat {{α}}^{(n)}}$:
      ${\hat {{α}}^{\left( n \right)}} = {\left( {{{{{Θ}}}^{\rm H}}{{{Θ}}} + {\beta ^{\left( {n - 1} \right)}}\Bigr/{\varepsilon ^{\left( {n - 1} \right)}}} \right)^{ - 1}}{{{{Θ}}}^{\rm H}}{{{y}}_S}$
     (2) 估计噪声方差 ${\hat\beta ^{\left( n \right)}}$:
      ${\hat\beta ^{\left( n \right)}} = {{\left\| {{{{y}}_S} - {{Θ}}{{\hat {{α}}}^{(n)}}} \right\|_2^2}\Bigr/N}$
     (3) 估计参数 ${\hat\varepsilon ^{\left( n \right)}}$:
      ${\hat\varepsilon ^{\left( n \right)}} = {{\left\| {{{\hat {{α}}}^{\left( n \right)}}} \right\|_2^2}\Bigr/M}$
     (4) 迭代判定:若 ${{\left\| {{{{α}}^{\left( n \right)}} - {{{α}}^{\left( {n - 1} \right)}}} \right\|_2^{}}\Bigr/{\left\| {{{{α}}^{\left( n \right)}}} \right\|_2^{}}} \ge \gamma $且 $n < {I_{\rm iter}}$,则
      $n \leftarrow n + 1$,执行(1)—(4);否则,结束循环。
     循环结束
     结果: $\hat {{α}} \leftarrow {{{α}}^{\left( n \right)}}$
    下载: 导出CSV
  • [1] Liao K F, Zhang X L, and Shi J. Plane-wave synthesis and RCS extraction via 3-D linear array SAR[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 994–997. DOI: 10.1109/LAWP.2015.2389264
    [2] Han K Y, Wang Y P, Tan W X, et al. Efficient Pseudopolar format algorithm for down-looking linear-array SAR 3-D imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 572–576. DOI: 10.1109/LGRS.2014.2351792
    [3] Zhuge X and Yarovoy A G. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 509–518. DOI: 10.1109/TGRS.2010.2053038
    [4] Wei S J, Zhang X L, Shi J, et al. Sparse array microwave 3-D imaging: Compressed sensing recovery and experimental study[J]. Progress in Electromagnetics Research, 2013, 135: 161–181. DOI: 10.2528/PIER12082305
    [5] 彭文杰. 基于压缩感知的阵列SAR三维成像方法研究[D]. [硕士论文], 电子科技大学, 2013.

    Peng Wen-jie. Array SAR3D imaging method based on compressed sensing[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013.
    [6] Donoho D L. Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. DOI: 10.1109/TIT.2006.871582
    [7] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589–592. DOI: 10.1016/j.crma.2008.03.014
    [8] Wei S J, Zhang X L, and Shi J. Linear array SAR Imaging via compressed sensing[J]. Progress in Electromagnetics Research, 2011, 117: 299–319. DOI: 10.2528/PIER11033105
    [9] Wei S J, Zhang X L, and Shi J. Compressed sensing linear array SAR 3-D imaging via sparse locations prediction[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1887–1890. DOI: 10.1109/IGARSS.2014.6946825.
    [10] Zhang S Q, Zhu Y T, Dong G G, et al. Truncated SVD-based compressive sensing for downward-looking three-dimensional SAR imaging with uniform/nonuniform linear array[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1853–1857. DOI: 10.1109/LGRS.2015.2431254
    [11] Tan X, Fang Y, Feng X Y, et al.. Sparse linear array three-dimensional imaging approach based on compressed sensing[C]. Proceedings of 2016 IEEE International Conference on Signal and Image Processing, Beijing, China, 2016: 296–299. DOI: 10.1109/SIPROCESS.2016.7888271.
    [12] Bao Q, Peng X M, Wang Z R, et al. DLSLA 3-D SAR imaging based on reweighted gridless sparse recovery method[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 841–845. DOI: 10.1109/LGRS.2016.2550057
    [13] Zhang S Q, Dong G G, and Kuang G Y. Superresolution downward-looking linear array three-dimensional SAR imaging based on two-dimensional compressive sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2184–2196. DOI: 10.1109/JSTARS.2016.2549548
    [14] Peng X M, Tan W X, Hong W, et al. Airborne DLSLA 3-D SAR image reconstruction by combination of polar formatting and L1 regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 213–226. DOI: 10.1109/TGRS.2015.2453202
    [15] Su W G, Wang H Q, Deng B, et al.. Sparse Bayesian SAR imaging of moving target via the EXCOV method[C]. Proceedings of 2014 IEEE Workshop on Statistical Signal Processing, Gold Coast, Australia, 2014: 448–451. DOI: 10.1109/SSP.2014.6884672.
    [16] Zou Y Q, Gao X Z, and Li X. Block sparse Bayesian learning based strip map SAR imaging method[C]. Proceedings of the 2016 10th European Conference on Antennas and Propagation, Davos, Switzerland, 2016: 1–4. DOI: 10.1109/EuCAP.2016.7481637.
    [17] 康乐, 张群, 李涛泳, 等. 基于贝叶斯学习的下视三维合成孔径雷达成像方法[J]. 光学学报, 2017, 37(6): 0611003. DOI: 10.3788/aos201737.0611003

    Kang Le, Zhang Qun, Li Tao-yong, et al. Imaging method of downward-looking three-dimensional synthetic aperture radar based on Bayesian learning[J]. Acta Optica Sinica, 2017, 37(6): 0611003. DOI: 10.3788/aos201737.0611003
    [18] 韦顺军, 田博坤, 张晓玲, 等. 基于半正定规划的压缩感知线阵三维SAR自聚焦成像算法[J]. 雷达学报, 2018, 7(6): 664–675. DOI: 10.12000/JR17103

    Wei Shun-jun, Tian Bo-kun, Zhang Xiao-ling, et al. Compressed sensing linear array sar autofocusing imaging via semi-definite programming[J]. Journal of Radars, 2018, 7(6): 664–675. DOI: 10.12000/JR17103
    [19] Yang J G, Thompson J, Huang X T, et al. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983–994. DOI: 10.1109/TGRS.2012.2204891
    [20] Xu J, Pi Y, and Cao Z. Bayesian compressive sensing in synthetic aperture radar imaging[J]. IET Radar,Sonar&Navigation, 2012, 6(1): 2–8. DOI: 10.1049/iet-rsn.2010.0375
    [21] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society. Series B(Methodological) , 1996, 58(1): 267–288. DOI: 10.1111/rssb.1996.58.issue-1
    [22] Chartrand R and Yin W T. Iteratively reweighted algorithms for compressive sensing[C]. Proceedings of 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, USA, 2008: 3869–3872. DOI: 10.1109/ICASSP.2008.4518498.
    [23] Ulander L M H, Hellsten H, and Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. DOI: 10.1109/TAES.2003.1238734
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  3261
  • HTML全文浏览量:  916
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-31
  • 修回日期:  2018-12-15
  • 网络出版日期:  2018-12-28

目录

    /

    返回文章
    返回