结合幅度信息的扩展目标随机有限集跟踪方法

柳超 孙进平 陈小龙 张志国

柳超, 孙进平, 陈小龙, 等. 结合幅度信息的扩展目标随机有限集跟踪方法[J]. 雷达学报, 2020, 9(4): 730–738. doi: 10.12000/JR19071
引用本文: 柳超, 孙进平, 陈小龙, 等. 结合幅度信息的扩展目标随机有限集跟踪方法[J]. 雷达学报, 2020, 9(4): 730–738. doi: 10.12000/JR19071
LIU Chao, SUN Jinping, CHEN Xiaolong, et al. Random finite set-based extended target tracking method with amplitude information[J]. Journal of Radars, 2020, 9(4): 730–738. doi: 10.12000/JR19071
Citation: LIU Chao, SUN Jinping, CHEN Xiaolong, et al. Random finite set-based extended target tracking method with amplitude information[J]. Journal of Radars, 2020, 9(4): 730–738. doi: 10.12000/JR19071

结合幅度信息的扩展目标随机有限集跟踪方法

DOI: 10.12000/JR19071
基金项目: 国家自然科学基金(61471019, U1633122)
详细信息
    作者简介:

    柳 超(1984–),男,山东宁阳人。北京航空航天大学博士生,研究方向为雷达数据处理。E-mail: LC2016@buaa.edu.cn

    孙进平(1975–),男,甘肃天水人,北京航空航天大学教授,博士生导师,主要研究方向为高分辨率雷达信号处理,数据处理,稀疏微波成像。E-mail: sunjinping@buaa.edu.cn

    陈小龙(1985–),男,山东烟台人,海军航空大学副教授,主要研究方向为雷达动目标检测、海杂波抑制、雷达信号精细化处理等。E-mail: cxlcxl1203@163.com

    张志国(1995–),男,山东聊城人,北京航空航天大学博士生,研究方向为雷达数据处理。E-mail: zzguo2016@163.com

    通讯作者:

    孙进平 sunjinping@buaa.edu.cn

  • 责任主编:何子述 Corresponding Editor: HE Zishu
  • 中图分类号: TP391.41

Random Finite Set-based Extended Target Tracking Method with Amplitude Information

Funds: The National Natural Science Foundation of China (61471019, U1633122)
More Information
  • 摘要: 基于随机有限集的扩展目标跟踪方法通常根据量测的空间信息进行量测划分,在杂波密集环境下有可能将杂波量测划入目标单元,从而造成跟踪性能的下降。为此,该文将目标和杂波的幅度信息引入高斯逆威沙特概率假设密度(GIW-PHD)滤波器,通过计算量测子集的幅度似然寻找最优的量测划分方法。此外,计算量测单元的中心时,采用幅度加权的方法计算量测单元的质量中心,以取代目前广泛使用的几何中心,从而进一步降低杂波对滤波器的干扰。在信杂比分别为13 dB和6 dB的条件下,通过对Rayleigh杂波中Swerling 1型起伏目标的跟踪结果证明了所提方法相比高斯逆威沙特概率假设密度滤波器具有更优的势估计和状态估计性能。

     

  • 图  1  扩展目标量测

    Figure  1.  Measurements of the extended targets

    图  2  扩展目标真实航迹(SCR=13 dB)

    Figure  2.  Real trajectories of the extended targets (SCR=13 dB)

    图  3  GIW-PHD单次航迹估计结果(SCR=13 dB)

    Figure  3.  Track estimation of the GIW-PHD in a run (SCR=13 dB)

    图  4  AI-GIW-PHD单次航迹估计结果(SCR=13 dB)

    Figure  4.  Track estimation of the AI-GIW-PHD in a run (SCR=13 dB)

    图  5  GIW-PHD单次扩展状态估计结果(SCR=13 dB)

    Figure  5.  Extended state estimation of the GIW-PHD in a run (SCR=13 dB)

    图  6  AI-GIW-PHD单次扩展状态估计结果(SCR=13 dB)

    Figure  6.  Extended state estimation of the AI-GIW-PHD in a run (SCR=13 dB)

    图  7  平均OSPA位置误差(SCR=13 dB)

    Figure  7.  Averaged OSPA location error (SCR=13 dB)

    图  8  平均势估计结果(SCR=13 dB)

    Figure  8.  Averaged cardinality estimation (SCR=13 dB)

    图  9  平均OSPA势误差(SCR=13 dB)

    Figure  9.  Averaged OSPA cardinality error (SCR=13 dB)

    图  10  平均OSPA位置误差(SCR=6 dB)

    Figure  10.  Averaged OSPA location error (SCR=6 dB)

    图  11  平均势估计结果(SCR=6 dB)

    Figure  11.  Averaged cardinality estimation (SCR=6 dB)

    图  12  平均OSPA势误差(SCR=6 dB)

    Figure  12.  Averaged OSPA cardinality error (SCR=6 dB)

  • [1] VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014
    [2] 尉强, 刘忠. 多普勒盲区下基于GM-PHD的雷达多目标跟踪算法[J]. 雷达学报, 2017, 6(1): 34–42. doi: 10.12000/JR16125

    WEI Qiang and LIU Zhong. A radar multi-target tracking algorithm based on Gaussian mixture PHD filter under Doppler blind zone[J]. Journal of Radars, 2017, 6(1): 34–42. doi: 10.12000/JR16125
    [3] GILHOLM K and SALMOND D. Spatial distribution model for tracking extended objects[J]. IEE Proceedings - Radar, Sonar and Navigation, 2005, 152(5): 364–371. doi: 10.1049/ip-rsn:20045114
    [4] BOERS Y, DRIESSEN H, TORSTENSSON J, et al. Track-before-detect algorithm for tracking extended targets[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(4): 345–351. doi: 10.1049/ip-rsn:20050123
    [5] MAHLER R. PHD filters for nonstandard targets, I: Extended targets[C]. The 2009 12th International Conference on Information Fusion, Seattle, USA, 2009: 915–921.
    [6] GRANSTRÖM K, LUNDQUIST C, and ORGUNER U. A Gaussian mixture PHD filter for extended target tracking[C]. The 2010 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8.
    [7] GRANSTRÖM K, LUNDQUIST C, and ORGUNER U. Extended target tracking using a Gaussian-Mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268–3286. doi: 10.1109/TAES.2012.6324703
    [8] ORGUNER U, LUNDQUIST C, and GRANSTRÖM K. Extended target tracking with a cardinalized probability hypothesis density filter[C]. The 14th International Conference on Information Fusion, Chicago, USA, 2011: 1–8.
    [9] ORGUNER U, LUNDQUIST C, and GRANSTRÖM K. Extended target tracking with a cardinalized probability hypothesis density filter[OL]. http://www.control.isy.liu.se/research/reports/2011/2999.pdf. 2011.
    [10] KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi: 10.1109/TAES.2008.4655362
    [11] GRANSTRÖM K and ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657–5671. doi: 10.1109/TSP.2012.2212888
    [12] LAN Jian and LI X R. Tracking of extended object or target group using random matrix—part I: New model and approach[C]. The 2012 15th International Conference on Information Fusion, Singapore, 2012: 2177–2184.
    [13] LAN Jian and LI X R. Tracking of extended object or target group using random matrix—part II: Irregular object[C]. The 2012 15th International Conference on Information Fusion, Singapore, 2012: 2185–2192.
    [14] GRANSTRÖM K and ORGUNER U. On spawning and combination of extended/group targets modeled with random matrices[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 678–692. doi: 10.1109/TSP.2012.2230171
    [15] ZHANG Yongquan and JI Hongbing. A novel fast partitioning algorithm for extended target tracking using a Gaussian mixture PHD filter[J]. Signal Processing, 2013, 93(11): 2975–2985. doi: 10.1016/j.sigpro.2013.04.006
    [16] ZHANG Yongquan and JI Hongbing. Robust Bayesian partition for extended target Gaussian inverse Wishart PHD filter[J]. IET Signal Processing, 2014, 8(4): 330–338. doi: 10.1049/iet-spr.2013.0150
    [17] 杨金龙, 刘风梅, 王冬, 等. 基于近邻传播聚类的多扩展目标量测集划分算法[J]. 雷达学报, 2015, 4(4): 452–459. doi: 10.12000/JR15003

    YANG Jinlong, LIU Fengmei, WANG Dong, et al. Affinity propagation based measurement partition algorithm for multiple extended target tracking[J]. Journal of Radars, 2015, 4(4): 452–459. doi: 10.12000/JR15003
    [18] LERRO D and BAR-SHALOM Y. Interacting multiple model tracking with target amplitude feature[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 494–509. doi: 10.1109/7.210086
    [19] CLARK D, RISTIC B, VO B N, et al. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 26–37. doi: 10.1109/TSP.2009.2030640
    [20] SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469
  • 加载中
图(12)
计量
  • 文章访问数:  2874
  • HTML全文浏览量:  1206
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-10-26
  • 网络出版日期:  2020-08-28

目录

    /

    返回文章
    返回