Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

多雷达协同探测技术研究进展:认知跟踪与资源调度算法

易伟 袁野 刘光宏 葛建军 孔令讲 杨建宇

折小强, 仇晓兰, 雷斌, 张薇, 卢晓军. 一种极化熵结合混合GEV模型的全极化SAR潮间带区域地物分类方法[J]. 雷达学报, 2017, 6(5): 554-563. doi: 10.12000/JR16149
引用本文: 易伟, 袁野, 刘光宏, 等. 多雷达协同探测技术研究进展:认知跟踪与资源调度算法[J]. 雷达学报, 2023, 12(3): 471–499. doi: 10.12000/JR23036
She Xiaoqiang, Qiu Xiaolan, Lei Bin, Zhang Wei, Lu Xiaojun. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image[J]. Journal of Radars, 2017, 6(5): 554-563. doi: 10.12000/JR16149
Citation: YI Wei, YUAN Ye, LIU Guanghong, et al. Recent advances in multi-radar collaborative surveillance: Cognitive tracking and resource scheduling algorithms[J]. Journal of Radars, 2023, 12(3): 471–499. doi: 10.12000/JR23036

多雷达协同探测技术研究进展:认知跟踪与资源调度算法

DOI: 10.12000/JR23036 CSTR: 32380.14.JR23036
基金项目: 国家自然科学基金(62231008, U19B2017),中央高校基本科研业务费专项资金(ZYGX2020ZB029)
详细信息
    作者简介:

    易 伟,博士,教授,研究方向为低可观测目标检测跟踪、多雷达协同探测等

    袁 野,博士,博士后,研究方向为多雷达协同探测、雷达资源管控技术等

    刘光宏,博士,研究员,研究方向为雷达总体设计、智能协同感知技术

    葛建军,博士,电科集团首席科学家,研究方向为雷达探测技术、认知与智能技术

    孔令讲,博士,教授,研究方向为雷达信号处理、新体制雷达、统计信号处理等

    杨建宇,博士,教授,研究方向为雷达信号处理、合成孔径雷达成像等

    通讯作者:

    易伟 kusso@uestc.edu.cn

  • 责任主编:丁建江 Corresponding Editor: DING Jianjiang
  • 中图分类号: TN95

Recent Advances in Multi-radar Collaborative Surveillance: Cognitive Tracking and Resource Scheduling Algorithms

Funds: The National Natural Science Foundation of China (62231008, U19B2017), The Fundamental Research Funds for the Central Universities (ZYGX2020ZB029)
More Information
  • 摘要: 多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。

     

  • 潮间带区域是一种位于陆地与海洋之间的特殊海岸区域,在低潮时露出水面而在高潮时被水淹没[1],其构成了一个独特的湿地生态系统,提供了多种植被必需的生长环境,是水产养殖、海洋环境观测、海洋经济开发以及海岸防御的重点区域。为了更好地开发利用潮间带区域,利用遥感对潮间带进行观测和研究的工作已得到开展[25]。如何基于遥感图像自动准确地将潮间带区域与水域及其他陆地区域分开,并能够准确区分潮间带区域不同植被或养殖类型,是潮间带区域监测所关心的问题。合成孔径雷达(Synthetic Aperture Radar, SAR)尤其是全极化SAR,由于其全天时全天候工作的优势和分类能力强的特点,在该方面的应用得到了关注[68]

    针对极化SAR数据,通过特征值分解以及散射分析等手段,可以从中提取出大量的多极化特征来描述地物的散射信息[9,10]。这些特征为极化SAR数据的应用提供了新的视角。近年来,基于极化特征的研究有了突破性的进展,广泛地应用在地物分类、典型目标检测提取等领域[1113]。相比于其他特征,极化熵被证实可以更好地描述地物的极化相关的纹理信息(polarization-dependent variation of texture)[14]和表面粗糙度[15],并且有较好的目标识别能力[16]。因此,极化熵广泛地应用在地物分类、海岸带典型目标检测[3,17]等领域。比较典型的有Cloude和Pottier1997年提出的基于极化熵的地物分类框架[16]以及Eun-Sung等人利用极化熵基于GEV分布实现对水下养殖区域的检测等[3]

    另外,从对极化SAR数据的统计特性的分析出发,已有研究将有限混合模型(Finite Mixture Models, FMM)等理论引入到基于极化SAR地物分类应用中[18]。从传统的混合Wishart模型[18]到混合U分布模型[19],基于FMM的极化SAR地物分类方法在城区、农田以及海洋等区域达到较好的分类效果。

    在潮间带区域,其在退潮后露出水面的部分主要由淤泥滩、浅留水体以及水产养殖等部分组成,而上述部分的电磁散射强度与水面差别不大,因此在极化SAR图像中表现为类似的散射强度和散射机制,不易区分。现有针对极化SAR数据进行地物分类的算法在潮间带这种特殊的地物场景中并不能得到很好的分类结果。现有基于SAR数据对于潮间带区域也有较多的研究,主要针对有潮海域的地貌变动监控[7,2022]、土壤湿度分析[1,8]以及特定地物的散射特性分析[3,17,23,24]等。比较典型的有Li Zhen等人针对1999–2006年波罗的海海域的潮间带地貌演变研究[7,2022]以及Hoonyol Lee等人对于韩国南部海域潮间带的土壤湿度变化研究[1]等。

    本文针对潮间带的特点,基于极化特征和FMM提出了一种新的地物分类方法。首先,本文针对4种典型的极化特征进行分析和筛选,得到一组最适合描述潮间带区域的多极化特征:极化熵和反熵。在此基础上,基于对极化熵图像的统计特性分析和极值理论,本文优选GEV分布对潮间带区域的极化熵分布进行描述[20,25]。随后构建了一种基于GEV混合模型(GEV Mixture Model, GEVMM)在极化熵特征中对潮间带地物进行标记。最后结合反熵的信息实现潮间带地物分类。本文利用RadarSAT-2获取的上海崇明岛东滩区域数据进行实验验证。与经典多极化SAR分类方法结果及实地考察真值的对比结果表明,本文方法能够有效地将潮间带区域与水域进行区分,并对潮间带内部不同场景类型进行分类,效果优于Wishart-H/A/α等经典方法。

    本文的结构如下:第2节详细介绍本文提出的分类方法,第3节基于实测数据对方法进行验证,并对结果进行分析讨论,第4节总结全文。

    在全极化SAR模式中,SAR系统以水平极化和垂直极化两种模式的组合来发射和接收电磁波[26]。极化散射矩阵为:

    S=[SHHSHVSVHSVV] (1)

    一般来说, SHV=SVH,因此Pauli散射矢量定义为:

    k=12[SHH+SVVSHHSVV2SHV]T (2)

    其中,T表示转置。基于k可以得到极化相干矩阵T3

    T3=1LLn=1kkT (3)

    其中,L为视数,上标 代表了复共轭。从极化散射矩阵S和极化相干矩阵T3中可以提取出来很多极化特征,其中4个最典型的多极化特征(Span, H, A, α)如下。

    极化总功率Span是一个典型的极化特征,其定义可以从极化散射矩阵S得到:

    Span=|SHH|2+|SHV|2+|SVH|2+|SVV|2 (4)

    Span影像为4个极化通道图像的功率之和,其中包含了各通道图像的信息。

    从极化相干矩阵T3中获取极化特征一般通过特征值分解,其中比较典型的为 H/A/α分解。 H/A/α已经在极化图像分类领域广泛使用,其定义为:

    T3=3i=1λiT3i=3i=1λiuiuiT (5)

    其中, λiT3矩阵的特征值,代表着第i个归一化分量 T3i的比重,其概率可以用Pi来表示:

    Pi=λi/λi3i=1λi3i=1λi (6)

    极化熵和反熵是 H/A/α分解后得到的两个重要特征,可以通过对 λi进行计算得到:

    H=3i=1PilogPi (7)
    A=λ2λ3λ2+λ3 (8)

    其中,H是极化熵,A是反熵,计算时特征值按照 λ1>λ2>λ3来排序。其中极化熵H描述了散射的随机性,其取值范围为0到1。当极化熵值较低时,可以认为只有一种主导散射机制;当极化熵值较高时,此时表现出较为强烈的去极化特性,散射机制趋向随机;当极化熵接近于1时,散射机制接近于噪声。反熵A是对极化熵H的一个有效补充,是对第2个和第3个特征值的差异的描述,并且对极化熵值大于0.7的高熵区域有着较好的识别性能[26]。一般来说,潮间带的大多数区域对于反熵的响应较弱,只有部分高熵区域,例如露出水面的金属隔离网,才有较高的反熵值。

    另外一个重要的 H/A/α分解特征是平均散射角,可以通过特征向量计算得到:

    α=3i=1Picos1(|ui(1)|) (9)

    其中,α为平均散射角,其值域范围为0° and 90°[26]

    在潮间带区域,退潮残留的水体、淤泥滩和水下农场等构成了复杂的地貌。残留水体和淤泥滩均有相对光滑的表面,且绝大部分的水下农场养殖区域可以被称为“浅层水域”,仅有少量的隔离网和部分植被的枝叶露出水面。因此,该区域在各个通道的雷达功率图像中均会表现出和海水相似的图像灰度值,如图1(a)所示。所以Span图虽然综合了全极化SAR的4个通道功率图像的幅度信息,但是这种简单的功率和并不能增强潮间带区域和海水的区分能力。

    图  1  潮间带的极化特征示例
    Figure  1.  Examples of multi-polarization features of intertidal area

    潮间带混杂的地物也导致了其散射机制的随机性变化较大,而极化熵H和反熵A均是对散射随机性的描述,因此这两个特征均有可能用来描述在潮间带区域。潮间带区域的极化熵和反熵示例分别如图1(b)图1(c)所示。可以看出,相比于Span,极化熵可以较好地区分海洋和潮间带区域,并且可以区分潮间带内部地物类型。而反熵则可以明显将高熵和低熵区域区分开来。因此对于潮间带区域,理论上来说极化熵是一种更普适的特征,而反熵更适合用来区分一些高熵区域。

    平均散射角α则是对潮间带区域的散射机制的直接描述。较为光滑的表面会产生较低的α值,随着α值的增大,散射机制依次从表面散射,体散射到二次散射过渡。简而言之,对于潮间带区域,平均散射角α可以认为是一种对表面粗糙度的衡量。淤泥滩和露出水面的水下植被与水面相比拥有不同粗糙度的表面,从而在α特征图中会有不同的表现,如图1(d)所示。但是,由于在潮汐作用下潮间带区域的地物表面相对平滑,其散射机制大多为不同程度的布拉格表面散射,因此这种粗糙度带来的差异性不足以用来对潮间带区域的地物分类。

    基于上述分析,本文优选极化熵H和反熵A来进行潮间带的分类,其中H为主要特征,A则作为补充。

    极化熵是一种对极化散射机制随机性的衡量。然而,对于中等分辨率(如Radarsat-2全极化模式分辨率为8 m)图像,一个像素点中可能包含多种地物,即有着较强的散射随机性,意味着比较高的极化熵值,当散射随机性很强时,极化熵值趋近于1,接近噪声水平。在潮间带中,虽然总体上来说其极化熵值不是很高,但是部分露出水面的植被以及金属隔离网区域有着较强的散射随机性会产生接近于1的极高熵值。这些高熵值在极化熵图像的统计直方图中导致一种long-tails现象。long-tails现象是风险预测或者灾害预警等极端事件研究中的重点,包括“左拖尾(厚尾)”和“右拖尾(薄尾)”[27]。对于这两种现象,传统的统计分布模型例如高斯分布模型或者Gamma分布模型难以给出好的拟合效果[25]。而常用的一些描述long-tails现象的模型,包括广义Gamma分布和k分布,均对“右拖尾”有较好的描述能力,但是不能很好地适应“左拖尾”。而且,k分布是基于乘性噪声模型提出,仅适用于均匀区域和弱纹理区域,对于极化熵图像不太适用[26]。极值理论方面的研究表明,GEV分布可以很好地描述有极端事件发生的随机过程。在近年来的研究中GEV分布已经被大量地用在SAR图像对特殊目标的分析中[3,20,25]。其中Eun-Sung的论文中对比了广义Gamma分布族中的Weibull分布和log-normal分布,证明了GEV分布能够更好地描述水下养殖等类似区域[3]。因此本文采用GEV来描述潮间带区域的极化熵图像。GEV分布是一族连续的极值概率分布,并且具有有限分布和稳定的特性。GEV分布的概率密度函数如式(10)所示:

    gev(x,μ,σ,ξ)={e(ξxμσ+1)1/ξ(ξxμσ+1)11/ξσ,ξxμσ+1>0, σ>0, ξ0e(xμσ)e(xμσ)σ,σ>0, ξ=0 (10)

    GEV分布的参数有3个:即形状参数 ξ,尺度参数σ和位置参数μ图2中给出了对于不同 ξ下的GEV分布的形态,其中 ξ分别为–0.5, 0, 0.5, σ和μ均为0.1和0.5。当 ξ等于0时为Gumbel分布,当 ξ大于0时为Weibull分布,而当 ξ小于0时为Frechet分布。其中Weibull描述的是一种“右拖尾分布”,Frechet描述的是一种“左拖尾分布”[27],而Gumbel分布为两者之间的过渡。因此,GEV分布对long-tails有着广泛的适应性以及较好的描述能力。

    图  2  GEV分布的3种形态
    Figure  2.  Three types of the GEV distribution

    通过上面的分析可以得出,GEV分布能够较好地描述潮间带区域的极化熵图像。由于单个概率分布只有一个峰值,而对于潮间带区域,多种地物必然会导致多个峰值的出现。因此基于GEV分布,可以通过建立一个有限混合模型(Finite Mixture Model, FMM)来实现对潮间带的地物分类。有限混合GEV模型(GEV Mixture Models, GEVMM)n个GEV分布的线性叠加,其定义如式(11)所示:

    f(x;ξ,σ,μ)=ni=1aifi(x;ξi,σi,μi) (11)

    其中,n为GEV分布的个数,在潮间带地物分类中代表着潮间带的地物种类,fi(·)代表着第i个种地物所服从的GEV分布。

    对于潮间带区域的极化熵图像H的地物分类可以分为两个步骤:首先是GEV混合模型的计算,然后将模型映射到图像空间中实现分类。其中最重要的一步是GEVMM的计算。本文以EM算法为基础,来实现对GEVMM的构建。

    EM算法是一种极大似然估计算法,以迭代的方式来实现对模型的估计。算法的每一次迭代都是由E步(求期望)和M步(将期望最大化)构成[28]。在本文中,首先给定类别个数和参数的初始值,然后在E步,依照当前模型参数,计算分模型i对图像中每个点xj的响应度 ˆγji,其计算公式为:

    ˆγji=aifi(xj;ξi,σi,μi|θi)niaifi(xj;ξi,σi,μi|θi) (12)

    其中,j为样本标记,i为类别标记,式中θi指在第i个分模型。在M步中,我们先根据响应度大小对图像像素进行归类,然后用最小二乘法估计出每个分模型的参数[29]。实验中最小二乘法估计通过MATLAB函数gevfit实现。如此迭代,直到参数收敛。

    另一方面,传统的FMM进行模型估计时分模型个数是固定的,难以适应不同的地物类型的特征值分布。因此,本文采用了自适应的的GEVMM估计方法。在迭代的过程中,如果对某一个类别产生最大响应的点的数目少于某个阈值时,该类别即认为无意义并删除。在本文的实验中,这个阈值被设为50。迭代收敛后得到GEVMM以及其中的各个分量,然后通过计算图像中的每个点对模型各分量的响应度,得到一个分类标记图。

    反熵作为极化熵的补充,其在高于0.7时采用较好的识别能力[26]。因此可以通过0.7这个阈值对反熵图像进行阈值分割,实现二值分类。基于此,本文通过将两个特征得到的结果进行融合,更好地实现潮间带的地物分类。假设极化熵得到的M类集合为 {A1,A2,,AM},反熵得到的两类为 {B1,B2},融合算法要处理的集合为各类的交集,即:

    C={AiBj,AiBj,i[1,M],j[1,2]} (13)

    对于C中的每一个像素x,分别计算其对AiBj的从属度 mx(Ai)mx(Bj)

    mx(Ai)=|H(x)xAi| (14)
    mx(Bj)=|A(x)xBj| (15)

    其中,H(x)为极化熵在x位置的值, xAi为极化熵图像中 Ai类所有像素的均值,即类别中心。同理, A(x)为反熵在x位置的值, xBj为反熵图像中 Bj类所有像素的均值。本文中采用如下准则来对交集C进行判决:如果 xCmx(Ai)>xCmx(Bj),那么C属于Ai类,反之C属于Bj类。这样就实现了分类结果的融合。

    GEVMM的构建流程以及图像分类算法流程如图3所示。

    图  3  基于GEVMM的图像分类流程
    Figure  3.  Flowchart of GEVMM

    基于本文的方法,利用Radarsat-2卫星的全极化数据进行了实验验证,实验数据的分辨率为8 m。研究区域位于上海崇明岛东滩潮间带,其卫星数据获取时间为2015年5月16日,此时的潮水处于低潮状态。图4描述了实验区域,其中图4(a)给出了整幅数据的Pauli伪彩色图像,其中的黄色矩形框代表着我们选定的实验区域,大小为20.0 km×5.6 km。数据获取时的实验区域的实时状态如图4(b)所示,从近到远依次是低矮植被区域,淤泥滩以及露出水面的水产养殖场的隔离网。

    图  4  所选实验区域
    Figure  4.  The selected study area

    实验中,本文首先基于实测数据对潮间带区域的极化特征进行目视解译与定量衡量来佐证前面的分析;然后基于所示的流程对潮间带进行地物分类;最后利用PolSAR Pro软件对研究区域进行Wishart-H/A/α分类,并和本文方法的实验结果进行对比和分析。

    图5给出了图4(a)黄框所示的研究区域的极化特征。基于上面的分析,下面结合实地考察结果以及图4(a)中所示的Pauli伪彩色图对4个特征进行目视解译。在图5(a)所示的Span影像中,我们可以识别出潮间带的大致轮廓以及金属隔离网等,但是潮间带内部细节的识别能力较差,并且潮间带和海洋的边界比较模糊。图5(b)给出了极化熵图像,从图中我们可以识别出海面,以及潮间带中的淤泥滩,草地以及暗色的残留水体等,并且和海面的区分较为显著,但是对金属隔离网的识别能力较差。图5(c)中的反熵可以很好地识别金属隔离网,但是无法识别出其他地物。而对于图5(d),平均散射角可以对潮间带区域中的地物进行一定的识别,但是不能很好地区分海面和潮间带中的水产养殖。对比Span、极化熵、反熵和平均散射角4张图,可以发现极化熵可以对除去金属隔离网之外的地物有着最好的视觉判别而反熵作为补充可以很好地识别出金属隔离网区域。因此,极化熵结合反熵,可以给出最好的视觉判别效果。

    图  5  研究区域的极化特征
    Figure  5.  Multi-polarization features of the study area

    为了进一步地佐证,本文采用Michelson对比度准则来衡量上述图像的类间对比度(between-region contrast)[30]。 Michelson准则是一种经典的图像衡量标准,并且广泛地用在SAR图像评价中[3,31]。其定义如下:

    C=FmaxFminFmax+Fmin (16)

    其中,FmaxFmin分别为图像的最大值和最小值。对比度值C位于[0, 1]区间。一般来说,C越高,对比度越强,区分能力也越强。表1给出了4个极化特征的类间对比度,从表中可以看出,反熵拥有最高的对比度值,极化熵的对比度紧随其后且高于其他两个特征。从前面的分析中可以得知,反熵对高熵部分响应强烈并且抑制了低熵部分的值,导致了较高的对比度值,也确保了其对潮间带的高熵部分的识别能力。从图5(c)可以看出,反熵对于具有高熵值的金属隔离网有着很好的区分能力,但是对其他低熵区域,区分能力很差。极化熵有着第二高的对比度值,从图5(b)中也可以看出极化熵对整个潮间带区域的细节有着很好的描述以及较好的区分能力。平均散射角α的对比度低于极化熵,从图5(d)中也可以看出其对潮间带的细节有一定的描述能力,但是无论是边缘的清晰度还是Michelson对比度都明显弱于极化熵。而Span图像在视觉判别能力和对比度方面表现最差。综上所述,极化熵和反熵的组合可以对潮间带区域地物进行很好的区分。

    表  1  各极化特征的Michelson类间对比度
    Table  1.  Michelson between-region contrast of different features
    极化特征 类间对比度
    Span 0.4092
    Entropy 0.7703
    Anisotropy 0.9959
    α 0.6757
    下载: 导出CSV 
    | 显示表格

    基于图5(b)所示的极化熵图像,我们按照图3所示的流程进行GEVMM建模和地物分类。在GEVMM构建中,根据实地考察结果结合极化熵图像我们初始指定模型的分量数目为8,经过迭代收敛后得到的模型中有5个分量,图6(f)给出了最终的GEVMM和极化熵直方图以及模型中各分量的图示。为了确保GEVMM的优越性,本文用Gamma分布和log-normal分布分别来拟合GEVMM得到的标记图中对应的每种类别的归一化直方图,与GEVMM的各个分量的拟合效果进行对比,如图6(a)图6(e)所示。图6(a)图6(e)展示了拟合对比结果,其中蓝色部分为各类别的直方图,绿线代表GEVMM的对应分量拟合结果,黑线代表Gamma模型拟合结果,红线代表了log-normal模型拟合结果。可以看出,GEV分布可以很好地拟合图6(d)图6(e)两图的“左拖尾现象”,明显优于其他两种模型。同样,图6(b)中GEV分布的拟合效果也明显优于其他两种分布。

    图  6  GEVMM及其各分量与Gamma分布和log-normal分布的对比:(a)–(e)分别为5个分量与Gamma分布,log-normal分布以及对应标记区域的直方图的对比,其中蓝色区域为归一化直方图,绿线是GEV拟合结果,黑线是Gamma拟合结果,红线是log-normal拟合结果,(f)给出了GEVMM及其各个分量与研究区域直方图的对比结果,其中蓝线为归一化直方图,红线为GEVMM,绿线为GEVMM的各个分量
    Figure  6.  Fitness comparison among GEV distribution and Gamma distribution and Log-normal distribution of each component in GEVMM: (a)–(e) represent the five components of the GEVMM and the fitting results by the Gamma distribution and log-normal distribution for the histograms, which are marked as blue, the green lines represent the GEV fitting results, the black lines represent the most fitted Gamma distribution and the red lines represent the most fitted log-normal distribution, (f) shows the five components of GEVMN as green lines and the respective histograms as blue lines, the red line represents the final model

    为了进一步确认GEVMM的准确性,本文采用赤池信息量准则(Akaike Information Criterion, AIC)对各个模型进行衡量[32]。AIC准则的定义如下:

    AIC=2k2Ln (17)

    其中,k为参数个数,n为样本个数,L为对数相似度(log likelihood)。对数相似度的定义如下:

    L = - \frac{n}{2}\ln \left( {2{π} } \right) - \frac{n}{2}\ln \left( {\frac{{{\rm{sse}}}}{n}} \right) - \frac{n}{2} (18)

    其中,sse为直方图和拟合结果之间的残差和。对于AIC准则来说,k越小或者L越大,AIC的值越小,模型的正确性也越高。其中k越小,模型越简洁,而L越大,模型越准确。表2给出了3种分布在每个类别对应的AIC值,可以看出GEV分布明显优于其他两种分布。结合图6表2,可以得出GEV分布模型有着最好的拟合能力。另外,最终得到的GEVMM和统计直方图之间的AIC值为4.0661,也说明了模型的有效性。

    表  2  GEV分布,Gamma分布和log-normal分布在每种类别中的拟合结果的AIC值
    Table  2.  The AIC values of the fitting results between the GEV distribution, the Gamma distribution and log-normal distribution
    AIC 1 2 3 4 5
    GEV 6.3988 4.0095 4.1105 4.7009 6.2093
    Gamma 11.3878 9.3573 7.6928 9.0210 8.3989
    log-normal 11.3878 9.3573 7.6928 9.0213 8.3997
    下载: 导出CSV 
    | 显示表格

    图7展示了地物分类实验结果,其中图7(a)给出了研究区域的Pauli伪彩色图。基于极化熵的GEVMM得到的图像分类标记图如图7(b)所示,通过融合图7(c)给出的反熵的分割结果,得到的最终分类结果如图7(d)所示。图7(e)给出了Wishart-H/A/α方法的分类结果。研究区域真值图如图7(f)所示,其中蓝色为海洋区域,浅蓝色和浅绿色区域分别为潮间带中的水下养殖与残留水体,黄色和棕黄色代表植被散射区域和淤泥滩,深红色代表金属隔离网。

    图  7  潮间带的地物分类实验结果
    Figure  7.  Classification results of the intertidal area

    对比发现极化熵得到的结果可以很好地识别出潮间带区域的大多地物类型,与真值较为一致,但是该图中地物只是分为5类,不能很好地识别出图7(f)中深红色的金属隔离网区域。而在图7(c)的反熵的阈值分割结果可以较好地提取出金属隔离网区域。图7(d)中融合后得到的分类结果和真值图相比有较为一致分类效果,并优于图7(b)图7(c)的结果。而图7(e)所示的Wishart-H/A/α的分类结果和真值图有着较大的不同。在研究区域,图7(e)只能将金属隔离网区域和其他地物区分,对于潮间带的其他5类,均不具备较好的区分度,并且潮间带区域和海洋区域未能进行很好地区分。

    针对本文提出的方法和Wishart-H/A/α分类方法,实验中采用Kappa系数来衡量两种方法的分类效果。结合真值数据,两种方法的Kappa系数分别为0.9019和0.3662,总体分类精度分别为0.8912和0.3712,也验证了本文方法的准确性。可见,在潮间带区域的地物分类中,本文的方法要优于Wishart-H/A/α分类。

    针对潮间带区域的地物分类问题,本文提出了结合极化熵和反熵的潮间带地物分类方法。基于极化熵图像,本文对潮间带区域建立GEVMM。在此基础上通过和反熵的信息融合得到最终的分类结果。实验中利用C波段Radarsat-2全极化数据实现了对上海崇明岛东滩潮间带区域的地物分类。对比真值图,本文方法可以给出较好目视结果并优于Wishart-H/A/α方法。最后的定量分析证明本文方法具有较好的准确性。

  • 图  1  复杂电磁环境下多雷达协同对空探测示意图

    Figure  1.  Schematic diagram of multi-radar collaborative air surveillance in complex electromagnetic environment

    图  2  多雷达协同探测示意图

    Figure  2.  Schematic diagram of multi-radar collaborative surveillance

    图  3  多雷达协同认知闭环构建

    Figure  3.  Cognitive closed-loop for multi-radar collaborative surveillance

    图  4  多雷达协同探测的信号处理认知闭环

    Figure  4.  Cognitive closed-loop for the signal processing of multi-radar collaborative surveillance

    图  5  多雷达协同探测及资源调度算法处理流程的认知闭环

    Figure  5.  Cognitive closed-loop for the processing of multi-radar collaborative surveillance and resource allocation algorithms

    图  6  认知跟踪算法与传统融合跟踪算法的区别

    Figure  6.  The difference between traditional target tracking and recognitive tracking algorithms

    图  7  多雷达协同多目标跟踪场景

    Figure  7.  Scenario of multi-radar collaborative target tracking

    图  8  网络化MIMO雷达多目标跟踪场景意图

    Figure  8.  Scenario of multi-target tracking with netted MIMO radar

    图  9  多雷达协同信息融合架构

    Figure  9.  Multi-radar information fusion architectures

    图  10  资源调度为基础的雷达认知跟踪闭环的处理流程

    Figure  10.  Resource allocation-based processing flow of the radar cognitive tracking

    图  11  3类可能的目标状态估计结果[126]

    Figure  11.  Three possible results of target state estimation[126]

    图  12  网络化MIMO雷达多目标跟踪场景[23]

    Figure  12.  Multi-target tracking scenario using netter MIMO radar[23]

    图  13  MinMax和QoS模型下多目标跟踪性能对比[23]

    Figure  13.  Multi-target tracking performance comparison between MinMax and QoS models[23]

    图  14  MinMax和QoS模型下资源分配结果对比(归一化发射功率)[23]

    Figure  14.  Resource allocation comparison between MinMax and QoS models (normalized transmit power)[23]

    图  15  直接资源最小化和QoS模型下多目标跟踪性能对比[33]

    Figure  15.  Multi-target tracking performance comparison between Direct resoure minimization and QoS models[33]

    表  1  文献[23]中QoS模型3种不同参数设置

    Table  1.   The 3 different parameters setting for the QoS model in Ref. [23]

    参数 \left[ {\eta _k^1,\eta _k^2,\eta _k^3,\eta _k^4} \right]\left[ {{\varpi ^1},{\varpi ^2},{\varpi ^3},{\varpi ^4}} \right]
    参数设置1[60 m, 60 m, 120 m, 240 m][0.25, 0.25, 0.25, 0.25]
    参数设置2[60 m, 60 m, 60 m, 240 m][0.25, 0.25, 0.25, 0.25]
    参数设置3[60 m, 60 m, 60 m, 240 m][0.40, 0.10, 0.40, 0.10]
    下载: 导出CSV
  • [1] 丁建江. 预警装备组网协同探测模型及应用[J]. 现代雷达, 2020, 42(12): 13–18. doi: 10.16592/j.cnki.1004-7859.2020.12.003

    DING Jianjiang. Model and application of the synergy-netted detection for early warning equipment[J]. Modern Radar, 2020, 42(12): 13–18. doi: 10.16592/j.cnki.1004-7859.2020.12.003
    [2] 董晓龙, 吴季, 姜景山. 微波辐射计用于隐身目标探测的性能分析[J]. 系统工程与电子技术, 2001, 23(3): 54–57. doi: 10.3321/j.issn:1001-506X.2001.03.016

    DONG Xiaolong, WU Ji, and JIANG Jingshan. The performance of the detection of stealthy targets by microwave radiometer[J]. Systems Engineering and Electronics, 2001, 23(3): 54–57. doi: 10.3321/j.issn:1001-506X.2001.03.016
    [3] DERHAM T, WOODBRIDGE K, GRIFFITHS H, et al. The design and development of an experimental netted radar system[C]. 2003 International Conference on Radar (IEEE Cat. No. 03EX695), Adelaide, Australia, 2003: 293–298.
    [4] BAKER C J and HUME A L. Netted radar sensing[J]. IEEE Aerospace and Electronic Systems Magazine, 2003, 18(2): 3–6. doi: 10.1109/MAES.2003.1183861
    [5] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2012.20010

    YANG Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2012.20010
    [6] 周琳. 雷达组网协同探测系统技术架构设计[J]. 现代雷达, 2020, 42(12): 19–23. doi: 10.16592/j.cnki.1004-7859.2020.12.004

    ZHOU Lin. Technical architecture design of radar network cooperative detection system[J]. Modern Radar, 2020, 42(12): 19–23. doi: 10.16592/j.cnki.1004-7859.2020.12.004
    [7] 王小军, 张修社, 胡小全, 等. 基于杀伤链感知的动态可重构作战体系结构[J]. 现代导航, 2020, 11(4): 235–243, 249. doi: 10.3969/j.issn.1674-7976.2020.04.001

    WANG Xiaojun, ZHANG Xiushe, HU Xiaoquan, et al. Dynamic reconfigurable combat architecture based on kill chain perception[J]. Modern Navigation, 2020, 11(4): 235–243, 249. doi: 10.3969/j.issn.1674-7976.2020.04.001
    [8] 刘宏伟, 严峻坤, 周生华. 网络化雷达协同探测技术[J]. 现代雷达, 2020, 42(12): 7–12. doi: 10.16592/j.cnki.1004-7859.2020.12.002

    LIU Hongwei, YAN Junkun, and ZHOU Shenghua. Collaborative detection technology of netted radar[J]. Modern Radar, 2020, 42(12): 7–12. doi: 10.16592/j.cnki.1004-7859.2020.12.002
    [9] 马林, 周琳. 预警系统协同探测技术研究[J]. 现代雷达, 2020, 42(12): 1–6. doi: 10.16592/j.cnki.1004-7859.2020.12.001

    MA Lin and ZHOU Lin. A study on collaborative detection technology of early warning system[J]. Modern Radar, 2020, 42(12): 1–6. doi: 10.16592/j.cnki.1004-7859.2020.12.001
    [10] 葛建军, 李春霞. 探测体系能力生成理论及方法[J]. 雷达科学与技术, 2018, 16(3): 237–241, 248. doi: 10.3969/j.issn.1672-2337.2018.03.001

    GE Jianjun and LI Chunxia. Theory and method for capability generation of detection system[J]. Radar Science and Technology, 2018, 16(3): 237–241, 248. doi: 10.3969/j.issn.1672-2337.2018.03.001
    [11] 丁建江. 组网协同探测闭环与预案的设计[J]. 雷达科学与技术, 2021, 19(1): 7–13. doi: 10.3969/j.issn.1672-2337.2021.01.002

    DING Jianjiang. Design of the closed-loop and pre-arranged planning for synergy-netted detection[J]. Radar Science and Technology, 2021, 19(1): 7–13. doi: 10.3969/j.issn.1672-2337.2021.01.002
    [12] DAVIS M S, SHOWMAN G A, and LANTERMAN A D. Coherent MIMO radar: The phased array and orthogonal waveforms[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(8): 76–91. doi: 10.1109/MAES.2014.130148
    [13] 陈金立, 顾红, 苏卫民, 等. 基于发射分集的MIMO雷达相参信号处理方法[J]. 系统工程与电子技术, 2009, 31(8): 1836–1841. doi: 10.3321/j.issn:1001-506X.2009.08.013

    CHEN Jinli, GU Hong, SU Weimin, et al. Method of coherent signal processing for MIMO radar based on transmitting diversity[J]. Systems Engineering and Electronics, 2009, 31(8): 1836–1841. doi: 10.3321/j.issn:1001-506X.2009.08.013
    [14] 鲁耀兵, 张履谦, 周荫清, 等. 分布式阵列相参合成雷达技术研究[J]. 系统工程与电子技术, 2013, 35(8): 1657–1662. doi: 10.3969/j.issn.1001-506X.2013.08.12

    LU Yaobing, ZHANG Lüqian, ZHOU Yinqing, et al. Study on distributed aperture coherence-synthetic radar technology[J]. Systems Engineering and Electronics, 2013, 35(8): 1657–1662. doi: 10.3969/j.issn.1001-506X.2013.08.12
    [15] 米闯. 分布式阵列相参合成雷达的发射相参相关研究[D]. [硕士论文], 西安电子科技大学, 2014.

    MI Chuang. Study on transmit coherence of distributed aperture coherence-synthetic radar[D]. [Master dissertation], Xidian University, 2014.
    [16] HAIMOVICH A M, BLUM R S, and CIMINI L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448
    [17] FISHLER E, HAIMOVICH A, BLUM R S, et al. Spatial diversity in radars—models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823–838. doi: 10.1109/TSP.2005.862813
    [18] 向龙, 丁建江, 周芬, 等. 协同探测群柔性架构分析与设计[J]. 现代雷达, 2022, 44(4): 1–5. doi: 10.16592/j.cnki.1004-7859.2022.04.001

    XIANG Long, DING Jianjiang, ZHOU Fen, et al. Analysis and design for the flexible architecture of synergy-netted detection cluster[J]. Modern Radar, 2022, 44(4): 1–5. doi: 10.16592/j.cnki.1004-7859.2022.04.001
    [19] HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335
    [20] CHARLISH A, HOFFMANN F, DEGEN C, et al. The development from adaptive to cognitive radar resource management[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(6): 8–19. doi: 10.1109/MAES.2019.2957847
    [21] BRYANT D J. Rethinking OODA: Toward a modern cognitive framework of command decision making[J]. Military Psychology, 2006, 18(3): 183–206. doi: 10.1207/s15327876mp1803_1
    [22] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188. doi: 10.1109/78.978374
    [23] YI Wei, YUAN Ye, HOSEINNEZHAD R, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602–1617. doi: 10.1109/TSP.2020.2976587
    [24] LI X R and JILKOV V P. Survey of maneuvering target tracking. Part I. Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333–1364. doi: 10.1109/TAES.2003.1261132
    [25] YAN Junkun, JIAO Hao, PU Wenqiang, et al. Radar sensor network resource allocation for fused target tracking: A brief review[J]. Information Fusion, 2022, 86/87: 104–115. doi: 10.1016/j.inffus.2022.06.009
    [26] LIGGINS M E, CHONG C Y, KADAR I, et al. Distributed fusion architectures and algorithms for target tracking[J]. Proceedings of the IEEE, 1997, 85(1): 95–107. doi: 10.1109/JPROC.1997.554211
    [27] HAYKIN S, HUBER K, and CHEN Zhe. Bayesian sequential state estimation for MIMO wireless communications[J]. Proceedings of the IEEE, 2004, 92(3): 439–454. doi: 10.1109/JPROC.2003.823143
    [28] SÄRKKÄ S. Bayesian Filtering and Smoothing[M]. Cambridge: Cambridge University Press, 2013: 17–24.
    [29] LI Xueting, ZHANG Tianxian, YI Wei, et al. Radar selection based on the measurement information and the measurement compensation for target tracking in radar network[J]. IEEE Sensors Journal, 2019, 19(18): 7923–7935. doi: 10.1109/JSEN.2019.2918866
    [30] SHI Chenguang, ZHOU Jianjiang, and WANG Fei. Low probability of intercept optimization for radar network based on mutual information[C]. 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), Xi’an, China, 2014: 683–687.
    [31] GODRICH H, HAIMOVICH A M, and BLUM R S. Target localization accuracy gain in MIMO radar-based systems[J]. IEEE Transactions on Information Theory, 2010, 56(6): 2783–2803. doi: 10.1109/TIT.2010.2046246
    [32] TICHAVSKY P, MURAVCHIK C H, and NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386–1396. doi: 10.1109/78.668800
    [33] YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2021, 69: 443–458. doi: 10.1109/TSP.2020.3047519
    [34] YUAN Ye, YI Wei, and VARSHNEY P K. Exponential mixture density based approximation to posterior cramér-rao lower bound for distributed target tracking[J]. IEEE Transactions on Signal Processing, 2022, 70: 862–877. doi: 10.1109/TSP.2022.3148540
    [35] ZHANG Haowei, LIU Weijian, SHI Junpeng, et al. Joint detection threshold optimization and illumination time allocation strategy for cognitive tracking in a networked radar system[J]. IEEE Transactions on Signal Processing, 2022, 70: 5833–5847. doi: 10.1109/TSP.2022.3188205
    [36] 王祥丽, 易伟, 孔令讲. 基于多目标跟踪的相控阵雷达波束和驻留时间联合分配方法[J]. 雷达学报, 2017, 6(6): 602–610. doi: 10.12000/JR17045

    WANG Xiangli, YI Wei, and KONG Lingjiang. Joint beam selection and dwell time allocation for multi-target tracking in phased array radar system[J]. Journal of Radars, 2017, 6(6): 602–610. doi: 10.12000/JR17045
    [37] YAN Junkun, PU Wenqiang, LIU Hongwei, et al. Cooperative target assignment and dwell allocation for multiple target tracking in phased array radar network[J]. Signal Processing, 2017, 141: 74–83. doi: 10.1016/j.sigpro.2017.05.014
    [38] YAN Junkun, PU Wenqiang, DAI Jinhui, et al. Resource allocation for search and track application in phased array radar based on Pareto bi-objective optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3487–3499. doi: 10.1109/TVT.2019.2894960
    [39] SHI Chenguang, DING Lintao, WANG Fei, et al. Joint target assignment and resource optimization framework for multitarget tracking in phased array radar network[J]. IEEE Systems Journal, 2021, 15(3): 4379–4390. doi: 10.1109/JSYST.2020.3025867
    [40] YUAN Ye, YI Wei, and KONG Lingjiang. Joint tracking sequence and dwell time allocation for multi-target tracking with phased array radar[J]. Signal Processing, 2021, 192: 108374. doi: 10.1016/j.sigpro.2021.108374
    [41] KIRUBARAJAN T, BAR-SHALOM Y, BLAIR W D, et al. IMMPDA solution to benchmark for radar resource allocation and tracking in the presence of ECM[C]. 1997 European Control Conference (ECC), Brussels, Belgium, 1997: 2967–2972.
    [42] BLAIR W D and WATSON G A. Benchmark problem for radar resource allocation and tracking maneuvering targets in the presence of ECM[R]. Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA, 1996.
    [43] MOO P W and DING Zhen. Coordinated radar resource management for networked phased array radars[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 1009–1020. doi: 10.1049/iet-rsn.2013.0368
    [44] LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [45] YAN Junkun, LIU Hongwei, PU Wenqiang, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417–6427. doi: 10.1109/TSP.2016.2607147
    [46] YAN Junkun, LIU Hongwei, JIU Bo, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110–3122. doi: 10.1109/TSP.2015.2417504
    [47] YAN Junkun, LIU Hongwei, JIU Bo, et al. Joint detection and tracking processing algorithm for target tracking in multiple radar system[J]. IEEE Sensors Journal, 2015, 15(11): 6534–6541. doi: 10.1109/JSEN.2015.2461435
    [48] CHENG Ting, LI Shuyi, and ZHANG Jie. Adaptive resource management in multiple targets tracking for co-located multiple input multiple output radar[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1038–1045. doi: 10.1049/iet-rsn.2018.5153
    [49] ZHANG Weiwei, SHI Chenguang, and ZHOU Jianjiang. Power minimization-based joint resource allocation algorithm for target localization in noncoherent distributed MIMO radar system[J]. IEEE Systems Journal, 2022, 16(2): 2183–2194. doi: 10.1109/JSYST.2021.3126152
    [50] SHI Chenguang, DING Lintao, WANG Fei, et al. Low probability of intercept-based collaborative power and bandwidth allocation strategy for multi-target tracking in distributed radar network system[J]. IEEE Sensors Journal, 2020, 20(12): 6367–6377. doi: 10.1109/JSEN.2020.2977328
    [51] REN Haiwei, YI Wei, LU Xiujuan, et al. Online beam scheduling for multi-target tracking in linear wireless array radar[C]. 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 2553–2558.
    [52] SUN Hao, LI Ming, ZUO Lei, et al. Joint radar scheduling and beampattern design for multitarget tracking in netted colocated MIMO radar systems[J]. IEEE Signal Processing Letters, 2021, 28: 1863–1867. doi: 10.1109/LSP.2021.3108675
    [53] CHEN Haowen, TA Shiying, and SUN Bin. Cooperative game approach to power allocation for target tracking in distributed MIMO radar sensor networks[J]. IEEE Sensors Journal, 2015, 15(10): 5423–5432. doi: 10.1109/JSEN.2015.2431261
    [54] 胡捍英, 孙扬, 郑娜娥. 多目标速度估计的分布式MIMO雷达资源分配算法[J]. 电子与信息学报, 2016, 38(10): 2453–2460. doi: 10.11999/JEIT151452

    HU Hanying, SUN Yang, and ZHENG Na’e. Resource allocation approach in distributed MIMO radar with multiple targets for velocity estimation[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2453–2460. doi: 10.11999/JEIT151452
    [55] ZHANG Haowei, XIE Junwei, GE Jiaang, et al. Finite sensor selection algorithm in distributed MIMO radar for joint target tracking and detection[J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 290–302. doi: 10.23919/JSEE.2020.000007
    [56] XIE Mingchi, YI Wei, KONG Lingjiang, et al. Receive-beam resource allocation for multiple target tracking with distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2421–2436. doi: 10.1109/TAES.2018.2818579
    [57] LIU Xinghua, XU Zhenhai, DONG Wei, et al. Cognitive resource allocation for target tracking in location-aware radar networks[J]. IEEE Signal Processing Letters, 2020, 27: 650–654. doi: 10.1109/LSP.2020.2987208
    [58] WANG Wenqin. Moving-target tracking by cognitive RF stealth radar using frequency diverse array antenna[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3764–3773. doi: 10.1109/TGRS.2016.2527057
    [59] LIU Pengfei, LIU Yimin, HUANG Tianyao, et al. Decentralized automotive radar spectrum allocation to avoid mutual interference using reinforcement learning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 190–205. doi: 10.1109/TAES.2020.3011869
    [60] DURST S and BRÜGGENWIRTH S. Quality of service based radar resource management using deep reinforcement learning[C]. 2021 IEEE Radar Conference (RadarConf21), Atlanta, USA, 2021: 1–6.
    [61] GARCIA N, HAIMOVICH A M, COULON M, et al. Resource allocation in MIMO radar with multiple targets for non-coherent localization[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2656–2666. doi: 10.1109/TSP.2014.2315169
    [62] CIUONZO D, JAVADI S H, MOHAMMADI A, et al. Bandwidth-constrained decentralized detection of an unknown vector signal via multisensor fusion[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 744–758. doi: 10.1109/TSIPN.2020.3037832
    [63] SELVI E, BUEHRER R M, MARTONE A, et al. Reinforcement learning for adaptable bandwidth tracking radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3904–3921. doi: 10.1109/TAES.2020.2987443
    [64] SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1316–1330. doi: 10.1109/TSP.2017.2770086
    [65] BELL K L, BAKER C J, SMITH G E, et al. Cognitive radar framework for target detection and tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1427–1439. doi: 10.1109/JSTSP.2015.2465304
    [66] WANG Fangzhou and LI Hongbin. Joint power allocation for radar and communication co-existence[J]. IEEE Signal Processing Letters, 2019, 26(11): 1608–1612. doi: 10.1109/LSP.2019.2941087
    [67] SHI Chenguang, WANG Yijie, WANG Fei, et al. Joint optimization scheme for subcarrier selection and power allocation in multicarrier dual-function radar-communication system[J]. IEEE Systems Journal, 2021, 15(1): 947–958. doi: 10.1109/JSYST.2020.2984637
    [68] VAN CHIEN T, BJÖRNSON E, and LARSSON E G. Joint power allocation and load balancing optimization for energy-efficient cell-free massive MIMO networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6798–6812. doi: 10.1109/TWC.2020.3006083
    [69] DING Lintao, SHI Chenguang, QIU Wei, et al. Joint dwell time and bandwidth optimization for multi-target tracking in radar network based on low probability of intercept[J]. Sensors, 2020, 20(5): 1269. doi: 10.3390/s20051269
    [70] LIU Xinghua, XU Zhenhai, WANG Luoshengbin, et al. Cognitive dwell time allocation for distributed radar sensor networks tracking via cone programming[J]. IEEE Sensors Journal, 2020, 20(10): 5092–5101. doi: 10.1109/JSEN.2020.2970280
    [71] MIR H S and GUITOUNI A. Variable dwell time task scheduling for multifunction radar[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 463–472. doi: 10.1109/TASE.2013.2285014
    [72] WATSON G A and BLAIR W D. Tracking performance of a phased array radar with revisit time controlled using the IMM algorithm[C]. 1994 IEEE National Radar Conference, Atlanta, USA, 1994: 160–165.
    [73] SHI Yuchun, JIU Bo, YAN Junkun, et al. Data-driven radar selection and power allocation method for target tracking in multiple radar system[J]. IEEE Sensors Journal, 2021, 21(17): 19296–19306. doi: 10.1109/JSEN.2021.3087747
    [74] MOHAMMADI A and ASIF A. Decentralized sensor selection based on the distributed posterior Cramér-Rao lower bound[C]. 2012 15th International Conference on Information Fusion, Singapore, 2012: 1668–1675.
    [75] SHEN Xiaojing and VARSHNEY P K. Sensor selection based on generalized information gain for target tracking in large sensor networks[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 363–375. doi: 10.1109/TSP.2013.2289881
    [76] ZOU Yi and CHAKRABARTY K. Sensor deployment and target localization in distributed sensor networks[J]. ACM Transactions on Embedded Computing Systems, 2004, 3(1): 61–91. doi: 10.1145/972627.972631
    [77] CHAVALI P and NEHORAI A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715–729. doi: 10.1109/TSP.2011.2174989
    [78] SUN Bin, CHEN Haowen, WEI Xizhang, et al. Power allocation for range-only localisation in distributed multiple-input multiple-output radar networks - a cooperative game approach[J]. IET Radar Sonar & Navigation, 2014, 8(7): 708–718.
    [79] YUAN Ye, YI Wei, KIRUBARAJAN T, et al. Scaled accuracy based power allocation for multi-target tracking with colocated MIMO radars[J]. Signal Processing, 2019, 158: 227–240. doi: 10.1016/j.sigpro.2019.01.014
    [80] XIE Mingchi, YI Wei, KIRUBARAJAN T, et al. Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 729–743. doi: 10.1109/TSP.2017.2777394
    [81] ZHANG Haowei, ZONG Binfeng, and XIE Junwei. Power and bandwidth allocation for multi-target tracking in collocated MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9795–9806. doi: 10.1109/TVT.2020.3002899
    [82] SU Yang, CHENG Ting, HE Zishu, et al. Adaptive resource management for multi-target tracking in co-located MIMO radar based on time-space joint allocation[J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 916–927. doi: 10.23919/JSEE.2020.000061
    [83] ZHANG Haowei, LIU Weijian, XIE Junwei, et al. Joint subarray selection and power allocation for cognitive target tracking in large-scale MIMO radar networks[J]. IEEE Systems Journal, 2020, 14(2): 2569–2580. doi: 10.1109/JSYST.2019.2960401
    [84] MA Botao, CHEN Haowen, SUN Bin, et al. A joint scheme of antenna selection and power allocation for Localization in MIMO radar sensor networks[J]. IEEE communications letters, 2014, 18(12): 2225–2228. doi: 10.1109/LCOMM.2014.2365206
    [85] KATSILIERIS F, DRIESSEN H, and YAROVOY A. Threat-based sensor management for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2772–2785. doi: 10.1109/TAES.2015.140052
    [86] SHI Chenguang, WANG Yijie, SALOUS S, et al. Joint transmit resource management and waveform selection strategy for target tracking in distributed phased array radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 58(4): 2762–2778. doi: 10.1109/TAES.2021.3138869
    [87] JIN Biao, KUANG Xiaofei, LIU Shujin, et al. Joint allocation of transmit power and signal bandwidth for distributed cognitive tracking radar network using cooperative game[J]. Digital Signal Processing, 2023, 135: 103964. doi: 10.1016/j.dsp.2023.103964
    [88] 孟令同, 易伟, 孔令讲. 动平台分布式雷达系统协同跟踪路径优化算法[J]. 信号处理, 2018, 34(11): 1321–1329. doi: 10.16798/j.issn.1003-0530.2018.11.007

    MENG Lingtong, YI Wei, and KONG Lingjiang. Path optimization method of distributed radar system with moving platform for cooperative target tracking[J]. Journal of Signal Processing, 2018, 34(11): 1321–1329. doi: 10.16798/j.issn.1003-0530.2018.11.007
    [89] TANG Yaoying, WANG Yao, and SHAO Xuehui. Mobile sensor path planning for multi-region surveillance with different mission importances[C]. 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), Chengdu, China, 2019: 1–5.
    [90] LU Xiujuan, KONG Lingjiang, SUN Jun, et al. Joint online route planning and power allocation for multitarget tracking in airborne radar systems[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
    [91] 严俊坤, 白舸, 黄佳沁, 等. 多机雷达协同区域动态覆盖航迹优化方法[J]. 雷达学报, 2023, 12(3): 541–549. doi: 10.12000/JR22196

    YAN Junkun, BAI Ge, HUANG Jiaqin, et al. Flight path optimization method for dynamic area coverage based on multi-aircraft Radars[J]. Journal of Radars, 2023, 12(3): 541–549. doi: 10.12000/JR22196
    [92] DAI Jinhui, PU Wenqiang, YAN Junkun, et al. Multi-UAV collaborative trajectory optimization for asynchronous 3-D passive multitarget tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5101116. doi: 10.1109/TGRS.2023.3239952
    [93] DING Lintao, SHI Chenguang, and ZHOU Jianjiang. Collaborative route optimization and resource management strategy for multi-target tracking in airborne radar system[J]. Digital Signal Processing, 2023, 138: 104051. doi: 10.1016/j.dsp.2023.104051
    [94] YAN Junkun, HE Tao, MA Lin, et al. Maneuvering resource allocation for coordinated target tracking in airborne radar network[J]. IEEE Transactions on Signal Processing, 2023, 71: 1563–1573. doi: 10.1109/TSP.2023.3265882
    [95] YI Jianxin, WAN Xianrong, LEUNG H, et al. Joint placement of transmitters and receivers for distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 122–134. doi: 10.1109/TAES.2017.2649338
    [96] LIANG Junli, HUAN Mingsai, DENG Xiaobo, et al. Optimal transmitter and receiver placement for localizing 2D interested-region target with constrained sensor regions[J]. Signal Processing, 2021, 183: 108032. doi: 10.1016/j.sigpro.2021.108032
    [97] WANG Yao, ZHOU Tao, and YI Wei. Geometric optimization of distributed MIMO radar system for accurate localization in multiple key subareas[J]. Signal Processing, 2022, 201: 108689. doi: 10.1016/j.sigpro.2022.108689
    [98] QI Cheng, XIE Junwei, and ZHANG Haowei. Joint antenna placement and power allocation for target detection in a distributed MIMO radar network[J]. Remote Sensing, 2022, 14(11): 2650. doi: 10.3390/rs14112650
    [99] YANG Chengxin, WANG Yao, and YI Wei. Network architecture optimization for area surveillance in multi-static radar systems[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
    [100] HERNANDEZ M L, KIRUBARAJAN T, and BAR-SHALOM Y. Multisensor resource deployment using posterior Cramer-Rao bounds[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 399–416. doi: 10.1109/TAES.2004.1309993
    [101] THARMARASA R, KIRUBARAJAN T, and HERNANDEZ M. Large-scale optimal sensor array management for multitarget tracking[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(5): 803–814. doi: 10.1109/TSMCC.2007.901003
    [102] YAN Junkun, LIU Hongwei, PU Wenqiang, et al. Joint threshold adjustment and power allocation for cognitive target tracking in asynchronous radar network[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3094–3106. doi: 10.1109/TSP.2017.2679693
    [103] YAN Junkun, PU Wenqiang, ZHOU Shenghua, et al. Optimal resource allocation for asynchronous multiple targets tracking in heterogeneous radar networks[J]. IEEE Transactions on Signal Processing, 2020, 68: 4055–4068. doi: 10.1109/TSP.2020.3007313
    [104] WU Linlong, MISHRA K V, SHANKAR M R B, et al. Resource allocation in heterogeneously-distributed joint radar-communications under asynchronous Bayesian tracking framework[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2026–2042. doi: 10.1109/JSAC.2022.3157371
    [105] MOHAMMADI A and ASIF A. Decentralized conditional posterior Cramér-Rao lower bound for nonlinear distributed estimation[J]. IEEE Signal Processing Letters, 2013, 20(2): 165–168. doi: 10.1109/LSP.2012.2235430
    [106] CHEN Junting, DAI Wenhan, SHEN Yuan, et al. Resource management games for distributed network localization[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(2): 317–329. doi: 10.1109/JSAC.2017.2659318
    [107] LU Yanxi, HE Zishu, CHENG Ziyang, et al. Adaptive resource allocation in decentralized colocated MIMO radar network for multiple targets tracking[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, USA, 2018: 152–157.
    [108] JIANG Xinyue, YI Wei, YUAN Ye, et al. Network cost based node selection strategy for multiple target tracking in netted radar system[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6.
    [109] DELIGIANNIS A, PANOUI A, LAMBOTHARAN S, et al. Game-theoretic power allocation and the nash equilibrium analysis for a multistatic MIMO radar network[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6397–6408. doi: 10.1109/TSP.2017.2755591
    [110] OZDEMIR O, NIU Ruixin, and VARSHNEY P K. Tracking in wireless sensor networks using particle filtering: Physical layer considerations[J]. IEEE Transactions on Signal Processing, 2009, 57(5): 1987–1999. doi: 10.1109/TSP.2009.2014818
    [111] YUAN Ye, YI Wei, CHOI W, et al. Dynamic quantizer design for target tracking for wireless sensor network with imperfect channels[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 1695–1711. doi: 10.1109/TWC.2022.3206493
    [112] 高晓光, 李飞, 万开方. 数据丢包环境下的多传感器协同跟踪策略研究[J]. 系统工程与电子技术, 2018, 40(11): 2450–2458. doi: 10.3969/j.issn.1001-506X.2018.11.10

    GAO Xiaoguang, LI Fei, and WAN Kaifang. Research on multi-sensor cooperative tracking strategy in data packet loss environment[J]. Systems Engineering and Electronics, 2018, 40(11): 2450–2458. doi: 10.3969/j.issn.1001-506X.2018.11.10
    [113] ZUO Lei, HU Juan, SUN Hao, et al. Resource allocation for target tracking in multiple radar architectures over lossy networks[J]. Signal Processing, 2023, 208: 108973. doi: 10.1016/j.sigpro.2023.108973
    [114] HURTADO M, ZHAO Tong, and NEHORAI A. Adaptive polarized waveform design for target tracking based on sequential Bayesian inference[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1120–1133. doi: 10.1109/TSP.2007.909044
    [115] HUE C, LE CADRE J P, and PEREZ P. Posterior Cramer-Rao bounds for multi-target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 37–49. doi: 10.1109/TAES.2006.1603404
    [116] YAN Junkun, JIU Bo, LIU Hongwei, et al. Prior knowledge-based simultaneous multibeam power allocation algorithm for cognitive multiple targets tracking in clutter[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 512–527. doi: 10.1109/TSP.2014.2371774
    [117] GROSSI E, LOPS M, and VENTURINO L. Joint design of surveillance radar and MIMO communication in cluttered environments[J]. IEEE Transactions on Signal Processing, 2020, 68: 1544–1557. doi: 10.1109/TSP.2020.2974708
    [118] FARINA A, RISTIC B, and TIMMONERI L. Cramer-Rao bound for nonlinear filtering with Pd<1 and its application to target tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1916–1924. doi: 10.1109/TSP.2002.800411
    [119] ZUO Long, NIU Ruixin, and VARSHNEY P K. Conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 1–14. doi: 10.1109/TSP.2010.2080268
    [120] ZHENG Yujiao, OZDEMIR O, NIU Ruixin, et al. New conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(10): 5549–5556. doi: 10.1109/TSP.2012.2205686
    [121] SUN Jun, YI Wei, VARSHNEY P K, et al. Resource scheduling for multi-target tracking in multi-radar systems with imperfect detection[J]. IEEE Transactions on Signal Processing, 2022, 70: 3878–3893. doi: 10.1109/TSP.2022.3191800
    [122] SUN Jun, YUAN Ye, WANG Yao, et al. Enumeration PCRLB-based power allocation for multitarget tracking with colocated MIMO radar systems in clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–18. doi: 10.1109/TGRS.2023.3278727
    [123] MOHAMMADI A and ASIF A. Distributed posterior Cramér-Rao lower bound for nonlinear sequential Bayesian estimation[C]. 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, USA, 2012: 509–512.
    [124] SUN Wei, YI Wei, XIE Mingchi, et al. Adaptive node and power simultaneous scheduling strategy for target tracking in distributed multiple radar systems[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–6.
    [125] WANG Xiangli, YI Wei, XIE Mingchi, et al. Time management for target tracking based on the predicted Bayesian Cramer-Rao lower bound in phase array radar system[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–5.
    [126] 袁野. 面向认知跟踪的无线分布式雷达资源闭环调度方法研究[D]. [博士论文], 电子科技大学, 2022.

    YUAN Ye. Research on closed-form resource allocation for wireless distributed radars with cognitive tracking[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2022.
    [127] SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469
    [128] IRCI A, SARANLI A, and BAYKAL B. Study on Q-RAM and feasible directions based methods for resource management in phased array radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1848–1864. doi: 10.1109/TAES.2010.5595599
    [129] CHARLISH A and HOFFMANN F. Cognitive Radar Management[M]. KLEMM R. Novel Radar Techniques and Applications Volume 2: Waveform Diversity and Cognitive Radar. Oxford, U.K.: IET, 2017: 157–193.
    [130] GODRICH H, PETROPULU A P, and POOR H V. Power allocation strategies for target localization in distributed multiple-radar architectures[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226–3240. doi: 10.1109/TSP.2011.2144976
    [131] YAN Junkun, PU Wenqiang, LIU Hongwei, et al. Robust chance constrained power allocation scheme for multiple target localization in colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 3946–3957. doi: 10.1109/TSP.2018.2841865
    [132] WANG Xiangli, YI Wei, XIE Mingchi, et al. A joint beam and dwell time allocation strategy for multiple target tracking based on phase array radar system[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–5.
    [133] SHI Chenguang, WANG Fei, SALOUS S, et al. Joint subcarrier assignment and power allocation strategy for integrated radar and communications system based on power minimization[J]. IEEE Sensors Journal, 2019, 19(23): 11167–11179. doi: 10.1109/JSEN.2019.2935760
    [134] YAN Junkun, DAI Jinhui, PU Wenqiang, et al. Target capacity based resource optimization for multiple target tracking in radar network[J]. IEEE Transactions on Signal Processing, 2021, 69: 2410–2421. doi: 10.1109/TSP.2021.3071173
    [135] XIONG Kui, ZHANG Tianxian, CUI Guolong, et al. Coalition game of radar network for multitarget tracking via model-based multiagent reinforcement learning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2123–2140. doi: 10.1109/TAES.2022.3208865
    [136] HAN Qinghua, PAN Minghai, LONG Weijun, et al. Joint adaptive sampling interval and power allocation for maneuvering target tracking in a multiple opportunistic array radar system[J]. Sensors, 2020, 20(4): 981. doi: 10.3390/s20040981
    [137] ZHANG Haowei, LIU Weijian, ZONG Binfeng, et al. An efficient power allocation strategy for maneuvering target tracking in cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 1591–1602. doi: 10.1109/TSP.2020.3047227
    [138] DAI Jinhui, YAN Junkun, PU Wenqiang, et al. Adaptive channel assignment for maneuvering target tracking in multistatic passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2780–2793. doi: 10.1109/TAES.2022.3218610
    [139] XU Gongguo, SHAN Ganlin, and DUAN Xiusheng. Sensor scheduling for ground maneuvering target tracking in presence of detection blind zone[J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 692–702. doi: 10.23919/JSEE.2020.000044
    [140] 耿文东. 基于相控阵雷达的群目标准自适应调度策略研究[J]. 雷达科学与技术, 2013, 11(2): 125–129. doi: 10.3969/j.issn.1672-2337.2013.02.003

    GENG Wendong. Research on quasi-adaptive scheduling strategy for tracking group target in phased array radar[J]. Radar Science and Technology, 2013, 11(2): 125–129. doi: 10.3969/j.issn.1672-2337.2013.02.003
    [141] CAO Lanying and HE Kefeng. Time resource scheduling algorithm for multiple target tracking in jamming[C]. IET International Radar Conference 2013, Xi’an, China, 2013: 1–4.
    [142] ZHANG Haowei, YAN Junkun, LIU Weijian, et al. Array scheduling with power and bandwidth allocation for simultaneous multibeam tracking low-angle targets in a VHF-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023.
    [143] LU Xiujuan, XU Zhenchang, REN Haiwei, et al. LPI-based resource allocation strategy for target tracking in the moving airborne radar network[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–6.
    [144] 李正杰, 谢军伟, 张浩为, 等. 一种低截获背景下的集中式MIMO雷达快速功率分配算法[J]. 雷达学报, 2013, 12(3): 602–612. doi: 10.12000/JR22203

    LI Zhengjie, XIE Junwei, ZHANG Haowei, et al. A fast power allocation algorithm in collocated MIMO radar under low intercept background[J]. Journal of Radars, 2013, 12(3): 602–612. doi: 10.12000/JR22203
    [145] 廖雯雯, 程婷, 何子述. MIMO雷达射频隐身性能优化的目标跟踪算法[J]. 航空学报, 2014, 35(4): 1134–1141. doi: 10.7527/S1000-6893.2013.0368

    LIAO Wenwen, CHENG Ting, and HE Zishu. A target tracking algorithm for RF stealth performance optimization of MIMO radar[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 1134–1141. doi: 10.7527/S1000-6893.2013.0368
    [146] LU Xiujuan, YI Wei, and KONG Lingjiang. LPI-based transmit resource scheduling for target tracking with distributed MIMO radar systems[J]. IEEE Transactions on Vehicular Technology, 2023: 1–15.
    [147] SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Low probability of intercept-based optimal power allocation scheme for an integrated multistatic radar and communication system[J]. IEEE Systems Journal, 2020, 14(1): 983–994. doi: 10.1109/JSYST.2019.2931754
    [148] 周颖, 施龙飞, 陈明辉, 等. 密集干扰环境下相控阵雷达资源管理优化研究[J]. 电子学报, 2005, 33(6): 999–1003. doi: 10.3321/j.issn:0372-2112.2005.06.010

    ZHOU Ying, SHI Longfei, CHEN Minghui, et al. Optimized resource management for phased array radar in dense jamming[J]. Acta Electronica Sinica, 2005, 33(6): 999–1003. doi: 10.3321/j.issn:0372-2112.2005.06.010
    [149] TAO Tingbao, ZHANG Gong, and LEUNG H. An optimal algorithm of time resource for multi-target tracking under active oppressive jamming[C]. 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 2019: 1–6.
    [150] LI Zhengjie, XIE Junwei, ZHANG Haowei, et al. Joint beam selection and power allocation in cognitive collocated MIMO radar for potential guidance application under oppressive jamming[J]. Digital Signal Processing, 2022, 127: 103579. doi: 10.1016/j.dsp.2022.103579
    [151] ZHANG Haowei, LIU Weijian, ZHANG Qiliang, et al. Joint resource optimization for a distributed MIMO radar when tracking multiple targets in the presence of deception jamming[J]. Signal Processing, 2022, 200: 108641. doi: 10.1016/j.sigpro.2022.108641
    [152] 赫彬, 苏洪涛. 认知雷达抗干扰中的博弈论分析综述[J]. 电子与信息学报, 2021, 43(5): 1199–1211. doi: 10.11999/JEIT200843

    HE Bin and SU Hongtao. A review of game theory analysis in cognitive radar anti-jamming[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1199–1211. doi: 10.11999/JEIT200843
    [153] SONG Xiufeng, WILLETT P, ZHOU Shengli, et al. The MIMO radar and jammer games[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 687–699. doi: 10.1109/TSP.2011.2169251
    [154] ZHANG Xiaobo, WANG Hai, RUAN Lang, et al. Joint channel and power optimisation for multi-user anti-jamming communications: A dual mode Q-learning approach[J]. IET Communications, 2022, 16(6): 619–633. doi: 10.1049/cmu2.12339
    [155] AILIYA, YI Wei, and VARSHNEY P K. Adaptation of frequency hopping interval for radar anti-jamming based on reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 12434–12449. doi: 10.1109/TVT.2022.3197425
  • 期刊类型引用(0)

    其他类型引用(2)

  • 加载中
图(15) / 表(1)
计量
  • 文章访问数: 3376
  • HTML全文浏览量: 1284
  • PDF下载量: 1164
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-06-09
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-06-28

目录

/

返回文章
返回