一种噪声环境下的雷达目标高分辨率距离像鲁棒识别方法

李玮杰 杨威 黎湘 刘永祥

李玮杰, 杨威, 黎湘, 等. 一种噪声环境下的雷达目标高分辨率距离像鲁棒识别方法[J]. 雷达学报, 2020, 9(4): 622–631. doi: 10.12000/JR19093
引用本文: 李玮杰, 杨威, 黎湘, 等. 一种噪声环境下的雷达目标高分辨率距离像鲁棒识别方法[J]. 雷达学报, 2020, 9(4): 622–631. doi: 10.12000/JR19093
LI Weijie, YANG Wei, LI Xiang, et al. Robust high resolution range profile recognition method for radar targets in noisy environments[J]. Journal of Radars, 2020, 9(4): 622–631. doi: 10.12000/JR19093
Citation: LI Weijie, YANG Wei, LI Xiang, et al. Robust high resolution range profile recognition method for radar targets in noisy environments [J]. Journal of Radars, 2020, 9(4): 622–631. doi: 10.12000/JR19093

一种噪声环境下的雷达目标高分辨率距离像鲁棒识别方法

DOI: 10.12000/JR19093
基金项目: 国家自然科学基金(61871384, 61401486),湖南省自然科学基金(2017JJ3367),上海航天科技创新基金(SAST2017-048)
详细信息
    作者简介:

    李玮杰(1998–),男,湖南株洲人,国防科技大学电子科学学院在读博士生,研究方向为雷达目标识别,机器学习,深度学习。E-mail: lwj2150508321@sina.cn

    杨 威(1985–),男,江西丰城人,博士,国防科技大学电子科学学院讲师,研究方向包括信息融合、多目标跟踪、融合目标识别。E-mail: yw850716@sina.com

    黎 湘(1967–),男,湖南浏阳人,教授,长江学者特聘教授,研究方向为目标探测识别与雷达成像等

    刘永祥(1976–),男,河北唐山人,博士,国防科技大学电子科学学院教授,博士生导师,研究方向为目标微动特性分析与识别。E-mail: lyx_bible@sina.com

    通讯作者:

    杨威 yw850716@sina.com

  • 责任主编:陈渤 Corresponding Editor: CHEN Bo
  • 中图分类号: TN957.51

Robust High Resolution Range Profile Recognition Method for Radar Targets in Noisy Environments

Funds: The National Natural Science Foundation of China (61871384, 61401486), The Natural Science Foundation of Hunan Province (2017JJ3367), The Innovation Foundation of Aerospace Science and Technology of Shanghai (SAST2017-048)
More Information
  • 摘要: 随着深度学习技术被应用于雷达目标识别领域,其自动提取目标特征的特性大大提高了识别的准确率和鲁棒性,但噪声环境下的鲁棒性有待进一步研究。该文提出了一种在噪声环境下基于卷积神经网络(CNN)的雷达高分辨率距离像(HRRP)数据识别方法,通过增强训练集和使用残差块、inception结构和降噪自编码层增强网络结构,实现了在较宽信噪比范围下的较高识别率,其中在信噪比为0 dB的瑞利噪声条件下,识别率达到96.14%,并分析了网络结构和噪声类型对结果的影响。

     

  • 图  1  卷积神经网络结构

    Figure  1.  The structure of CNN

    图  2  Dropout示意图

    Figure  2.  The schematic diagram of Dropout

    图  3  残差块结构图

    Figure  3.  The structure of residual block

    图  4  Inception结构图

    Figure  4.  The structure of inception

    图  5  降噪自编码器层结构图

    Figure  5.  The structure of residual DAE

    图  6  网络结构

    Figure  6.  The structure of network

    图  7  网络功能框图

    Figure  7.  The block diagram of network function

    图  8  HRRP数据示意图

    Figure  8.  Schematic diagram of HRRP

    图  9  卷积神经网络结构图

    Figure  9.  The structure of CNN

    表  1  飞机参数(m)

    Table  1.   Parameters of planes (m)

    机型机长机高机宽
    安2623.809.8329.20
    奖状14.404.5715.90
    雅克4236.389.8334.88
    下载: 导出CSV

    表  2  训练集加入瑞利噪声结果

    Table  2.   Recognition results based on Rayleigh noise training set

    信噪比(dB)–5–3035101520测试集未加入噪声
    图6改进CNN平均识别率91.1493.9896.1497.3797.7198.5899.2499.5399.81
    安26识别率88.8392.9796.4797.8098.5098.9399.1399.4099.90
    奖状识别率92.1395.4397.9399.2099.5399.6399.7799.9099.97
    雅克42识别率92.4793.5394.0395.1095.1097.1798.8399.3099.57
    图6改进CNN
    (训练集中未加噪声)
    平均识别率51.5157.8963.4165.1465.7266.4066.5866.6899.81
    安26识别率00000000.0399.47
    奖状识别率99.8099.8399.7799.87100.00100.00100.00100.0099.97
    雅克42识别率54.7773.8390.4795.5797.1799.2099.73100.00100.00
    图9的CNN平均识别率85.3090.4394.9096.6697.3098.1998.3698.4499.63
    安26识别率72.1379.2786.5390.5792.1094.7395.2095.4799.97
    奖状识别率83.9092.1798.2399.5099.8399.9099.9399.9399.67
    雅克42识别率99.8799.8799.9399.9099.9799.9399.9399.9399.27
    图9的CNN
    (训练集中未加噪声)
    平均识别率33.8634.5038.1251.8261.3266.6266.7068.2099.97
    安26识别率0000000.104.6099.90
    奖状识别率1.573.5014.3755.4783.9799.87100.00100.00100.00
    雅克42识别率100.00100.00100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表  3  训练集加入高斯白噪声结果

    Table  3.   Recognition results based on White Gaussian noise training set

    信噪比(dB)–5–3035101520测试集未加入噪声
    图6改进CNN平均识别率85.9991.6196.0498.0799.0099.6899.8899.9499.94
    安26识别率86.6390.2094.0096.3098.0799.3099.7099.8399.87
    奖状识别率83.2792.7797.0099.2399.6099.90100.00100.00100.00
    雅克42识别率88.0791.8797.1398.6799.3399.8399.93100.0099.97
    图6改进CNN
    (训练集中未加噪声)
    平均识别率55.9358.8963.9169.1070.9475.4982.7393.0199.90
    安26识别率12.0013.4715.1720.3721.3329.6349.4379.4099.83
    奖状识别率82.2084.5790.5795.5797.6399.6399.97100.00100.00
    雅克42识别率73.6078.6386.0091.3793.8797.2098.8099.6399.87
    图9的CNN平均识别率80.6187.2393.7496.5997.5998.8799.0899.2199.19
    安26识别率71.3778.5086.7791.7393.9096.8797.6397.8097.73
    奖状识别率80.6789.5397.0799.2099.4399.8799.7799.9399.93
    雅克42识别率89.8093.6797.4098.8399.4399.8799.8399.9099.90
    图9的CNN
    (训练集中未加噪声)
    平均识别率39.9242.7447.0953.9059.9073.0986.6997.4799.98
    安26识别率0.570.831.773.375.3022.2060.2792.4799.97
    奖状识别率21.7328.9040.3358.8374.6397.1099.8399.97100.0
    雅克42识别率97.4798.5099.1799.5099.7799.9799.9799.9799.97
    下载: 导出CSV

    表  4  不同噪声类型识别结果

    Table  4.   Recognition results based on different noise types

    信噪比(dB)–5–3035101520测试集未加入噪声
    方案1平均识别率76.7382.2188.3192.1293.4196.2397.9799.0699.79
    安26识别率76.4780.5383.9085.9086.3090.9094.5397.4099.57
    奖状识别率73.3778.4387.1092.6795.3798.2399.4799.8099.80
    雅克42识别率80.3787.6793.9397.8098.5799.5799.9099.97100.00
    方案2平均识别率81.6887.1892.5394.9395.5296.7096.9497.0897.18
    安26识别率63.6372.9782.2087.2388.5091.0391.5791.8792.13
    奖状识别率81.6088.7795.5097.7798.3099.2799.5099.6099.63
    雅克42识别率99.8099.8099.9099.8099.7799.8099.7799.7799.77
    下载: 导出CSV

    表  5  删除结构加入噪声结果

    Table  5.   Recognition results based on deleted structure

    信噪比(dB)–5–3035101520测试集未加入噪声
    图6改进CNN平均识别率79.9886.8393.1196.1897.1198.5998.7298.9999.03
    安26识别率73.5082.0389.6094.3394.9797.1097.3097.7097.80
    奖状识别率81.9089.5096.6398.7799.5099.7799.9099.9099.87
    雅克42识别率84.5388.9793.1095.4396.8798.9098.9799.3799.43
    删除第1个残差块平均识别率79.5984.8290.7693.6694.3695.6895.8896.0996.04
    安26识别率68.9774.7080.6784.6785.9788.2388.6389.0089.07
    奖状识别率82.5088.4396.8098.8399.5099.7399.8399.8399.83
    雅克42识别率87.3091.3394.8097.4797.6099.0799.1799.4399.23
    删除第2个残差块平均识别率79.0685.5391.5194.4495.4196.7896.8897.1197.12
    安26识别率65.9373.7792.8088.0389.6392.3092.6392.9093.07
    奖状识别率94.6091.0096.2798.4799.2099.5099.5099.6399.57
    雅克42识别率86.6391.2795.5796.9397.4098.5398.5098.8098.73
    删除第1, 2个残差块平均识别率74.5182.3889.6792.3193.2193.9394.2894.5494.44
    安26识别率58.3369.1778.0081.8783.1384.6085.5786.2785.93
    奖状识别率68.5080.4092.9796.6097.9398.3398.5398.5798.57
    雅克42识别率96.7097.5798.0398.4798.5798.8798.7398.8098.83
    删除inception模块平均识别率78.0884.4290.1092.8193.7195.1495.2695.4895.58
    安26识别率73.7379.1385.1788.3789.1390.9791.0391.3091.30
    奖状识别率82.6788.9795.5397.5398.4399.2099.2399.2799.27
    雅克42识别率80.8385.1789.6092.5393.5795.2795.5095.8796.17
    删除降噪自编码器层平均识别率78.5983.6090.0093.6294.8396.3296.9997.4097.33
    安26识别率71.9776.9083.6388.8090.3792.3093.3393.7393.53
    奖状识别率77.7383.0791.2094.6796.3397.7098.6399.0799.17
    雅克42识别率86.0790.8395.1797.4097.8098.9799.0099.4099.30
    下载: 导出CSV
  • [1] 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040

    WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040
    [2] LUNDÉN J and KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6. doi: 10.1109/radar.2016.7485271.
    [3] 盖晴晴, 韩玉兵, 南华, 等. 基于深度卷积神经网络的极化雷达目标识别[J]. 电波科学学报, 2018, 33(5): 575–582. doi: 10.13443/j.cjors.2017112101

    GAI Qingqing, HAN Yubing, NAN Hua, et al. Polarimetric radar target recognition based on depth convolution neural network[J]. Chinese Journal of Radio Science, 2018, 33(5): 575–582. doi: 10.13443/j.cjors.2017112101
    [4] JITHESH V, SAGAYARAJ M J, and SRINIVASA K G. LSTM recurrent neural networks for high resolution range profile based radar target classification[C]. The 3rd International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, 2017: 1–6. doi: 10.1109/ciact.2017.7977298.
    [5] 徐彬, 陈渤, 刘宏伟, 等. 基于注意循环神经网络模型的雷达高分辨率距离像目标识别[J]. 电子与信息学报, 2016, 38(12): 2988–2995. doi: 10.11999/JEIT161034

    XU Bin, CHEN Bo, LIU Hongwei, et al. Attention-based recurrent neural network model for radar high-resolution range profile target recognition[J]. Journal of Electronics &Information Technology, 2016, 38(12): 2988–2995. doi: 10.11999/JEIT161034
    [6] 徐彬, 陈渤, 刘家麒, 等. 采用双向LSTM模型的雷达HRRP目标识别[J]. 西安电子科技大学学报, 2019, 46(2): 29–34.

    XU Bin, CHEN Bo, LIU Jiaqi, et al. Radar HRRP target recognition by the bidirectional LSTM model[J]. Journal of Xidian University, 2019, 46(2): 29–34.
    [7] 刘家麒, 陈渤, 介茜. 基于注意力机制和双向GRU模型的雷达HRRP目标识别[J]. 雷达学报, 2019, 8(5): 589–597. doi: 10.12000/JR19014

    LIU Jiaqi, CHEN Bo, and JIE Xi. Radar high-resolution range profile target recognition based on attention mechanism and bidirectional gated recurrent[J]. Journal of Radars, 2019, 8(5): 589–597. doi: 10.12000/JR19014
    [8] 赵飞翔, 刘永祥, 霍凯. 基于栈式降噪稀疏自动编码器的雷达目标识别方法[J]. 雷达学报, 2017, 6(2): 149–156. doi: 10.12000/JR16151

    ZHAO Feixiang, LIU Yongxiang, and HUO Kai. Radar target recognition based on stacked denoising sparse autoencoder[J]. Journal of Radars, 2017, 6(2): 149–156. doi: 10.12000/JR16151
    [9] 张欢. 基于射频隐身的机载雷达系统软件实现及HRRP目标识别研究[D]. [硕士论文], 南京航空航天大学, 2016.

    ZHANG Huan. RF stealth based airborne radar system simulation and HRRP target recognition research[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2016.
    [10] GOODFELLOW I, BENGIO Y, and COURVILLE A, 赵申剑, 黎彧君, 符天凡, 等译. 深度学习[M]. 北京: 人民邮电出版社, 2017: 199–226.

    GOODFELLOW I, BENGIO Y, and COURVILLE A, ZHAO Shenjian, LI Yujun, FU Tianfan, et al. translation. Deep Learning[M]. Beijing: Posts and Telecommunications Press.
    [11] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv:1207.0580, 2012.
    [12] NIELSEN M A. Neural Networks and Deep Learning[M]. San Francisco, USA: Determination Press, 2015.
    [13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [14] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    [15] XING Chen, MA Li, and YANG Xiaoquan. Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J]. Journal of Sensors, 2016, 2016: 3632943.
    [16] DU Lan, LIU Hongwei, WANG Penghui, et al. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3546–3559. doi: 10.1109/tsp.2012.2191965
    [17] RICHARDS M A, 邢孟道, 王彤, 李真芳, 等译. 雷达信号处理基础[M]. 2版. 北京: 电子工业出版社, 2017: 64–67.

    RICHARDS M A, XING Mengdao, WANG Tong, LI Zhenfang, et al. translation. Fundamentals of Radar Signal Processing[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2017: 64–67.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  3638
  • HTML全文浏览量:  1371
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 修回日期:  2019-12-07
  • 网络出版日期:  2020-08-28

目录

    /

    返回文章
    返回