开放式相控阵概念与系统架构

胡明春

胡明春. 开放式相控阵概念与系统架构[J]. 雷达学报, 2023, 12(4): 684–695. doi: 10.12000/JR23103
引用本文: 胡明春. 开放式相控阵概念与系统架构[J]. 雷达学报, 2023, 12(4): 684–695. doi: 10.12000/JR23103
HU Mingchun. Concept and system architecture of open phased array[J]. Journal of Radars, 2023, 12(4): 684–695. doi: 10.12000/JR23103
Citation: HU Mingchun. Concept and system architecture of open phased array[J]. Journal of Radars, 2023, 12(4): 684–695. doi: 10.12000/JR23103

开放式相控阵概念与系统架构

DOI: 10.12000/JR23103
基金项目: 国家部委基金
详细信息
    作者简介:

    胡明春,研究员级高级工程师,主要研究方向为雷达系统总体工程研发和天线理论

    通讯作者:

    胡明春 13951004670@139.com

  • 责任主编:汤俊 Corresponding Editor: TANG Jun
  • 中图分类号: TN801

Concept and System Architecture of Open Phased Array

Funds: The National Ministries Foundation
More Information
  • 摘要: 该文首次全面系统地阐述开放式相控阵的具体概念内涵和系统架构,开放式相控阵具有资源虚拟化、应用软件化和硬件积木化特征,能够适应当前和未来不断变化的作战任务、工作环境、适装平台等需求,将成为下一代相控阵系统发展的主流,在探测、通信、电子战等方向具有广阔的应用前景。该文详细阐述了开放式相控阵的发展需求、发展历程及其具体概念内涵,系统描述了开放式相控阵系统层次化架构,从硬件层、资源层、应用层等方面对开放式相控阵设计理念、设计方法进行了全面介绍,重点介绍了开放式相控阵的核心特征,资源虚拟化和处理流程重构,提出支撑开放式相控阵实现的核心技术,探索引领新一代射频系统形态发展。

     

  • 图  1  开放式相控阵系统概念

    Figure  1.  Schematic diagram of concept of open phased array system

    图  2  开放式相控阵系统架构

    Figure  2.  Schematic diagram of systematic architecture of open phased array system

    图  3  开放式相控阵系统应用层架构示意

    Figure  3.  Schematic diagram of appliance layer architecture of open phased array system

    图  4  开放式相控阵系统硬件层架构

    Figure  4.  Schematic diagram of hardware layer architecture of open phased array system

    图  5  有源子阵各功能分层的构成要素

    Figure  5.  Constituent components of multiple functional layers of active sub-array

    图  6  开放式全互联后端架构

    Figure  6.  Schematic diagram of open and interconnected back end

    图  7  开放式相控阵系统资源层架构

    Figure  7.  Schematic diagram of resource layer architecture of open phased array system

    图  8  资源调度的数学过程

    Figure  8.  Mathematical process of resource scheduling of open phased array system

    图  9  资源虚拟化流程示例

    Figure  9.  Instance of resource virtualization process of open phased array system

    图  10  典型场景下的资源虚拟化示意

    Figure  10.  Instance of resource virtualization in typical operating scenario

    图  11  二维处理流程重构示意

    Figure  11.  Schematic diagram of 2D processing reconfiguration of open phased array system

    图  12  雷达抗干扰流程重构示例

    Figure  12.  Instance of processing reconfiguration for radar ECCM

    图  13  晶圆级微系统集成

    Figure  13.  Integration of microsystem in wafer level

    图  14  智能化处理

    Figure  14.  Schematic diagram of intelligent processing

    图  15  分布式分层分级并行计算

    Figure  15.  Schematic diagram of parallel computing in multiple layers and priorities

  • [1] 伍光新, 李归. 综合射频一体化系统技术发展综述[J]. 现代雷达, 2023, 45(5): 1–14. doi: 10.16592/j.cnki.1004-7859.2023.05.001

    WU Guangxin and LI Gui. Overview of technological development of integrated RF system[J]. Modern Radar, 2023, 45(5): 1–14. doi: 10.16592/j.cnki.1004-7859.2023.05.001
    [2] MOO P W and DIFILIPPO D J. Multifunction RF systems for naval platforms[J]. Sensors, 2018, 18(7): 2076. doi: 10.3390/s18072076
    [3] 刘宏伟, 严峻坤, 周生华. 网络化雷达协同探测技术[J]. 现代雷达, 2020, 42(12): 7–12. doi: 10.16592/j.cnki.1004-7859.2020.12.002

    LIU Hongwei, YAN Junkun, and ZHOU Shenghua. Collaborative detection technology of netted radar[J]. Modern Radar, 2020, 42(12): 7–12. doi: 10.16592/j.cnki.1004-7859.2020.12.002
    [4] 刘泉华, 张凯翔, 梁振楠, 等. 地基分布式相参雷达技术研究综述[J]. 信号处理, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001

    LIU Quanhua, ZHANG Kaixiang, LIANG Zhennan, et al. Research overview of ground-based distributed coherent aperture radar[J]. Journal of Signal Processing, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001
    [5] 韩长喜, 邓大松, 王虎, 等. 2022年雷达技术发展综述[J]. 中国电子科学研究院学报, 2023, 18(2): 108–112. doi: 10.3969/j.issn.1673-5692.2023.02.002

    HAN Changxi, DENG Dasong, WANG Hu, et al. Development of radar technology in 2022[J]. Journal of CAEIT, 2023, 18(2): 108–112. doi: 10.3969/j.issn.1673-5692.2023.02.002
    [6] BROOKNER E. Advances and breakthroughs in radars and phased-arrays[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–9.
    [7] 汤俊, 吴洪, 魏鲲鹏. 软件化雷达技术研究[J]. 雷达学报, 2015, 4(4): 481–489. doi: 10.12000/JR15012

    TANG Jun, WU Hong, and WEI Kunpeng. Software radar technology[J]. Journal of Radars, 2015, 4(4): 481–489. doi: 10.12000/JR15012
    [8] KLEIN M, CARPENTIER T, JEANCLAUDE E, et al. Ai-augmented multi function radar engineering with digital twin: Towards proactivity[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–6.
    [9] 马咏雪, 邢文革, 沈学勇, 等. 海上反突防作战中雷达应用模式研究[J]. 现代雷达, 2023, 45(4): 66–74. doi: 10.16592/j.cnki.1004-7859.2023.04.010

    MA Yongxue, XING Wenge, SHEN Xueyong, et al. A study on radar operating mode for marine anti-penetration battle[J]. Modern Radar, 2023, 45(4): 66–74. doi: 10.16592/j.cnki.1004-7859.2023.04.010
    [10] 赵保军, 陈士涛, 李大喜, 等. 国外六代机发展及作战概念分析[J]. 现代防御技术, 2022, 50(6): 19–25. doi: 10.3969/j.issn.1009-086x.2022.06.003

    ZHAO Baojun, CHEN Shitao, LI Daxi, et al. Analysis of the sixth generation fighter development and operational concept[J]. Modern Defense Technology, 2022, 50(6): 19–25. doi: 10.3969/j.issn.1009-086x.2022.06.003
    [11] 王冠, 尹童, 曹颖. 国外高超声速武器攻防发展态势研究[J]. 现代防御技术, 2022, 50(2): 26–32. doi: 10.3969/j.issn.1009-086x.2022.02.004

    WANG Guan, YIN Tong, and CAO Ying. Research on the development of foreign hypersonic offensive and defensive weapons[J]. Modern Defence Technology, 2022, 50(2): 26–32. doi: 10.3969/j.issn.1009-086x.2022.02.004
    [12] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[C]. 第十九届中国科协年会——分4信息新技术 东北新工业论坛论文集, 长春, 2017: 169–174.

    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar Low-observable target detection[C]. 19th Annual Conference of CAST——Selected Papers of the Northeast New Industry Forum on Information New Technology, Changchun, China, 2017: 169–174.
    [13] 王峰, 李培, 徐锋. 新一代雷达电磁空间深蓝博弈技术需求分析[J]. 中国电子科学研究院学报, 2021, 16(12): 1195–1200, 1223. doi: 10.3969/j.issn.1673-5692.2021.12.003

    WANG Feng, LI Pei, and XU Feng. Demand analysis of deep blue game in electromagnetic space for new generation radar[J]. Journal of CAEIT, 2021, 16(12): 1195–1200, 1223. doi: 10.3969/j.issn.1673-5692.2021.12.003
    [14] 宫尚玉, 陈亮, 王月悦. 外军机载干扰吊舱发展研究[J]. 舰船电子对抗, 2022, 45(6): 8–14. doi: 10.16426/j.cnki.jcdzdk.2022.06.003

    GONG Shangyu, CHEN Liang, and WANG Yueyue. Research into the development of airborne jamming pods in foreign military[J]. Shipboard Electronic Countermeasure, 2022, 45(6): 8–14. doi: 10.16426/j.cnki.jcdzdk.2022.06.003
    [15] 王昊, 肖慧鑫. 一种小型无人机载雷达伺服系统设计[J]. 火力与指挥控制, 2018, 43(9): 159–162, 168. doi: 10.3969/j.issn.1002-0640.2018.09.033

    WANG Hao and XIAO Huixin. Desigh of a small radar servo system for UAV[J]. Fire Control &Command Control, 2018, 43(9): 159–162, 168. doi: 10.3969/j.issn.1002-0640.2018.09.033
    [16] 李龙, 刘峥, 陈熠, 等. 高超声速平台雷达杂波特性研究[J]. 现代雷达, 2013, 35(11): 80–83. doi: 10.3969/j.issn.1004-7859.2013.11.019

    LI Long, LIU Zheng, CHEN Yi, et al. Research of radar clutter characteristics on hypersonic vehicle[J]. Modern Radar, 2013, 35(11): 80–83. doi: 10.3969/j.issn.1004-7859.2013.11.019
    [17] 叶海军, 潘舟浩, 秦国杰, 等. 无人预警机系统架构及关键技术分析[J]. 中国电子科学研究院学报, 2022, 17(5): 411–415. doi: 10.3969/j.issn.1673-5692.2022.05.001

    YE Haijun, PAN Zhouhao, QIN Guojie, et al. The system architecture and key technologies analyses of unmanned early warning aircraft[J]. Journal of CAEIT, 2022, 17(5): 411–415. doi: 10.3969/j.issn.1673-5692.2022.05.001
    [18] 赵正平. Chiplet基三维集成技术与集成微系统的新进展(续)[J]. 微纳电子技术, 2023, 60(5): 641–657. doi: 10.13250/j.cnki.wndz.2023.05.001

    ZHAO Zhengping. New advances in Chiplet-based 3D integration technology and integrated microsystems (continued)[J]. Micronanoelectronic Technology, 2023, 60(5): 641–657. doi: 10.13250/j.cnki.wndz.2023.05.001
    [19] 李康, 纠博, 赵宇, 等. 雷达智能博弈抗干扰技术综述与展望[J]. 现代雷达, 2023, 45(5): 15–26. doi: 10.16592/j.cnki.1004-7859.2023.05.002

    LI Kang, JIU Bo, ZHAO Yu, et al. Overview and prospects of radar intelligent game-based anti-jamming technology[J]. Modern Radar, 2023, 45(5): 15–26. doi: 10.16592/j.cnki.1004-7859.2023.05.002
    [20] HAIGH K and ANDRUSENKO J. Cognitive Electronic Warfare: An Artificial Intelligence Approach[M]. Norwood: Artech House, 2021: 1–288.
    [21] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [22] 刘洋, 黄志, 徐娟, 等. 并行算法在气象数据处理中的研究与应用[J]. 电子设计工程, 2023, 31(11): 152–156, 162. doi: 10.14022/j.issn1674-6236.2023.11.033

    LIU Yang, HUANG Zhi, XU Juan, et al. Research and application of the parallel algorithm in meteorological data processing[J]. Electronic Design Engineering, 2023, 31(11): 152–156, 162. doi: 10.14022/j.issn1674-6236.2023.11.033
    [23] 杨小牛. 从软件无线电到认知无线电, 走向终极无线电——无线通信发展展望[J]. 中国电子科学研究院学报, 2008, 3(1): 1–7. doi: 10.3969/j.issn.1673-5692.2008.01.001

    YANG Xiaoniu. Software radio, cognitive radio and ultimate radio—a prospect of wireless communication[J]. Journal of CAEIT, 2008, 3(1): 1–7. doi: 10.3969/j.issn.1673-5692.2008.01.001
    [24] DoD Open Systems Architecture Data Rights Team. DoD open systems architecture contract guidebook for program managers v. 1.1[EB/OL]. https://www.acqnotes.com/Attachments/Open System Architecture (OSA) Contract Guidebook for Program Managers, 2013.
    [25] Tech Target Contributor. Open system[EB/OL]. https://www.techtarget.com/whatis/definition/open-system, 2005.
    [26] 崔林海, 张子迎, 姜占鹏, 等. 计算机组成原理与结构[M]. 哈尔滨工业大学出版社, 2015: 1–233.

    CUI Linhai, ZHANG Ziying, JIANG Zhanpeng, et al. Computer Organization and Architecture[M]. Harbin: Harbin Institute of Technology Press, 2015: 1–233.
    [27] 唐朔飞. 计算机组成原理[M]. 2版. 北京: 高等教育出版社, 2008: 1–400.

    TANG Shuofei. Principles of Computer Composition[M]. 2nd ed. Beijing: Higher Education Press, 2008: 1–400.
    [28] 张荣涛, 杨润亭, 王兴家, 等. 软件化雷达系统技术综述[J]. 现代雷达, 2016, 38(10): 1–3. doi: 10.16592/j.cnki.1004-7859.2016.10.001

    ZHANG Rongtao, YANG Runting, WANG Xingjia, et al. System technology of software defined radar[J]. Modern Radar, 2016, 38(10): 1–3. doi: 10.16592/j.cnki.1004-7859.2016.10.001
    [29] 汤俊, 岑宗骏. 软件化雷达技术发展思考与展望[J]. 信号处理, 2022, 38(10): 1999–2008. doi: 10.16798/j.issn.1003-0530.2022.10.001

    TANG Jun and CEN Zongjun. Thinking of the prospect of software-based radar technology[J]. Journal of Signal Processing, 2022, 38(10): 1999–2008. doi: 10.16798/j.issn.1003-0530.2022.10.001
    [30] 井应忠, 陈晓东. 基于模块化开放式系统架构的复杂电磁环境建设[J]. 信息化研究, 2018, 44(3): 1–4.

    JING Yingzhong and CHEN Xiaodong. Complex electromagnetic environment building based on modular open system architecture[J]. Informatization Research, 2018, 44(3): 1–4.
    [31] 丁琳琳, 李路野. 可重构雷达架构研究[J]. 信息技术与信息化, 2017(7): 103–105. doi: 10.3969/j.issn.1672-9528.2017.07.029

    DING Linlin and LI Luye. Research on radar software architectur based software bus technology[J]. Information Technology and Informatization, 2017(7): 103–105. doi: 10.3969/j.issn.1672-9528.2017.07.029
    [32] ANDREWS S E, YOHO P K, BANNER G P, et al. Radar open system architecture for Lincoln space surveillance activities[R]. Lexington: MIT Lincoln Laboratory, 2010.
    [33] 胡明春. 开放式有源相控阵天线系统[J]. 现代雷达, 2008, 30(8): 1–4. doi: 10.3969/j.issn.1004-7859.2008.08.001

    HU Mingchun. Open active phased array system[J]. Modern Radar, 2008, 30(8): 1–4. doi: 10.3969/j.issn.1004-7859.2008.08.001
    [34] 岳帅英, 彭芃, 任渊. 舰载多功能相控阵雷达发展现状与趋势[J]. 舰船科学技术, 2023, 45(2): 141–147. doi: 10.3404/j.issn.1672-7649.2023.02.025

    YUE Shuaiying, PENG Peng, and REN Yuan. Development status and future trend of ship-based multi-functional phased array radar[J]. Ship Science and Technology, 2023, 45(2): 141–147. doi: 10.3404/j.issn.1672-7649.2023.02.025
    [35] 刁华飞, 殷智勇, 张雅声, 等. 美国夸贾林“太空篱笆”系统概述与分析[J]. 航天电子对抗, 2020, 36(2): 56–59. doi: 10.3969/j.issn.1673-2421.2020.02.019

    DIAO Huafei, YIN Zhiyong, ZHANG Yasheng, et al. Overview and analysis of the US Kwajalein “space fence” surveillance system[J]. Aerospace Electronic Warfare, 2020, 36(2): 56–59. doi: 10.3969/j.issn.1673-2421.2020.02.019
    [36] 郭敏洁. 2021年外军情报侦察领域发展综述[J]. 中国电子科学研究院学报, 2022, 17(4): 324–328. doi: 10.3969/j.issn.1673-5692.2022.04.003

    GUO Minjie. Comprehensive analysis of annual development of the intelligence su surveillance and reconnaissance in 2021[J]. Journal of CAEIT, 2022, 17(4): 324–328. doi: 10.3969/j.issn.1673-5692.2022.04.003
    [37] ROZA D. The air force is moving forward with a replacement for its decades-old long-range radar[EB/OL]. https://taskandpurpose.com/news/air-force-tpy-4-lockheed-radar/, 2023,
    [38] ORMAN A J, POTTS C N, SHAHANI A K, et al. Scheduling for a multifunction phased array radar system[J]. European Journal of Operational Research, 1996, 90(1): 13–25. doi: 10.1016/0377-2217(95)00307-X
    [39] HARITSA J R, LIVNY M, and CAREY M J. Earliest deadline scheduling for real-time database systems[C]. Twelfth Real-time Systems Symposium, San Antonio, USA, 1991: 232–242.
    [40] MOO P W and DING Z. Adaptive Radar Resource Management[M]. Amsterdam: Elsevier, 2016: 1–50.
    [41] HUIZING A G and BLOEMEN A A F. An efficient scheduling algorithm for a multifunction radar[C]. International Symposium on Phased Array Systems and Technology, Boston, USA, 1996: 359–364.
    [42] MIRANDA S L C, BAKER C J, WOODBRIDGE K, et al. Phased array radar resource management: A comparison of scheduling algorithms[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 79–84.
  • 加载中
图(15)
计量
  • 文章访问数:  1424
  • HTML全文浏览量:  708
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 修回日期:  2023-07-12
  • 网络出版日期:  2023-07-26
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回