交叉眼干扰研究综述

刘天鹏 魏玺章 刘振 丁锦灿

刘天鹏, 魏玺章, 刘振, 等. 交叉眼干扰研究综述[J]. 雷达学报, 2019, 8(1): 140–153. doi: 10.12000/JR19013
引用本文: 刘天鹏, 魏玺章, 刘振, 等. 交叉眼干扰研究综述[J]. 雷达学报, 2019, 8(1): 140–153. doi: 10.12000/JR19013
YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, et al. Human fall detection method using millimeter-wave radar based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656–664. doi: 10.12000/JR21015
Citation: LIU Tianpeng, WEI Xizhang, LIU Zhen, et al. Overview of cross-eye jamming research[J]. Journal of Radars, 2019, 8(1): 140–153. doi: 10.12000/JR19013

交叉眼干扰研究综述

DOI: 10.12000/JR19013
基金项目: 国家自然科学基金(61801488)
详细信息
    作者简介:

    刘天鹏(1985–),男,吉林梅河口人,博士,讲师。2016年在国防科技大学电子科学学院获得博士学位,现担任国防科技大学电子科学学院讲师。主要研究方向为雷达信号处理、雷达对抗以及交叉眼干扰,目前已发表论文8篇。E-mail: everliutianpeng@sina.cn

    魏玺章(1976–),男,河北吴桥人,博士,研究员。2002年在国防科技大学电子科学学院获得博士学位,现担任中山大学电子与通信工程学院教授。主要研究方向为雷达信号处理、自动目标识别以及雷达干扰,目前已发表论文50余篇。E-mail: liweier@nudt.edu.cn

    刘 振(1983–),男,江苏泰兴人,博士,副研究员。2013年在国防科技大学电子科学学院获得博士学位,现担任国防科技大学电子科学学院副研究员。主要研究方向为雷达信号处理、雷达波形设计以及雷达干扰,目前已发表论文30余篇。E-mail: zhen_liu@nudt.edu.cn

    通讯作者:

    魏玺章  weixzh7@mail.sysu.edu.cn

  • 中图分类号: TN974

Overview of Cross-eye Jamming Research

Funds: The National Natural Science Foundation of China (61801488)
More Information
  • 摘要: 交叉眼干扰是一种能够有效对抗单脉冲雷达的角度欺骗干扰。随着对抗主动式雷达导引头的需求提升,研究交叉眼干扰理论、研制交叉眼干扰系统正成为电子战领域的热点问题。该文从交叉眼干扰的理论发展、装备发展、应用难题以及研究趋势等4个方面进行综合论述,以期提供交叉眼干扰的全面认识和后续研究思路。

     

  • 图  1  体外式非相干角度欺骗干扰装备

    Figure  1.  Off-board nonconherent angular deception jammer

    图  2  交叉眼干扰的物理解释

    Figure  2.  The physical interpretation of cross-eye jamming

    图  3  两源反向交叉眼干扰的干扰场景

    Figure  3.  Jamming geometry of two-element retrodirective cross-eye jamming

    图  4  多源/多环路反向交叉眼干扰的干扰场景

    Figure  4.  Jamming geometry of multiple-element or multi-loop retrodirective cross-eye jamming

    图  5  多源反向交叉眼干扰的交叉眼增益[46]

    Figure  5.  Cross-eye gain of multiple-element retrodirective cross-eye jamming[46]

    图  6  意大利ELETTRONIC公司进行的试验场景

    Figure  6.  Experiments performed by ELETTRONICA

    图  7  普陀利亚大学的交叉眼干扰验证系统[58]

    Figure  7.  Cross-eye jamming system of University of Pretoria[58]

    图  8  机载交叉眼干扰系统

    Figure  8.  The airborne cross-eye jamming systems

    图  9  非反向天线结构[32]

    Figure  9.  The non-retrodirective antenna configuration[32]

    图  10  两种反向天线结构

    Figure  10.  Two retrodirective antenna configurations

    图  11  线性反向天线阵列

    Figure  11.  The linear retrodirective array

    图  12  两源反向交叉眼干扰的参数容限分析

    Figure  12.  Tolerance analysis of two-element retrodirective cross-eye jamming

    图  13  多源反向交叉眼干扰的参数容限分析[46]

    Figure  13.  Tolerance analysis of multiple-element retrodirective cross-eye jamming[46]

    图  14  两源反向交叉眼干扰的交叉眼增益中值与干信比的关系[42]

    Figure  14.  Relationship between the median cross-eye gain and JSR for two-element retrodirective cross-eye jamming[42]

    图  15  多源反向交叉眼干扰的交叉眼增益中值与干信比的关系[46]

    Figure  15.  Relationship between the median cross-eye gain and JSR for multiple-element retrodirective cross-eye jamming[46]

    图  16  干扰环路差对多源反向交叉眼干扰造成的性能恶化[46]

    Figure  16.  The performance deterioration of multiple-element retrodirective cross-eye jamming resulted by jamming loop differences[46]

  • [1] SHERMAN S M and BARTON D K. Monopulse Principles and Techniques[M]. Boston, London: Artech House, 2011: 1–13.
    [2] LOTHES R N, SZYMANSKI M B, and WILEY R G. Radar Vulnerability to Jamming[M]. Boston, London: Artech House, 1990: 85–129.
    [3] SCHLEHER D C. Electronic Warfare in the Information Age[M]. Boston, London: Artech House, 1999: 262–278.
    [4] ADAMY D L. EW 101: A First Course in Electronic Warfare[M]. Boston, London: Artech House, 2001: 48–50.
    [5] NERI F. Introduction to Electronic Defense Systems[M]. Boston, London: Artech House, 2006: 373–487.
    [6] NERI F. Anti-monopulse jamming techniques[C]. Proceedings of 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Belem, Brazil, 2001: 45–50.
    [7] HSU Y S and LAQUER A G. Radar terrain bounce jamming detection using ground clutter tracking[P]. US, 5483240, 1996.
    [8] LI Ping, GENG Xiaoming, ZHANG Yan, et al. The analysis on angle noise produced by blinking jamming[C]. Proceedings of 2009 International Asia Conference on Informatics in Control, Automation and Robotics, Bangkok, Thailand, 2009: 441–444.
    [9] WANG Jiantao, GENG Xiaoming, and ZHANG Dan. Analysis on influence of synchronous blinking jamming to radar seeker antenna[C]. Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 2008: 1–4.
    [10] KERINS W J. Analysis of towed decoys[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4): 1222–1227. doi: 10.1109/7.259525
    [11] BENSON M, BALL E C, KUJIRAOKA E, et al. Adaptive cross polarization electronic countermeasures system[P]. US, 6486823B1, 2002.
    [12] FALK L. Cross-eye jamming of monopulse radar[C]. Proceedings of 2007 International IEEE Waveform Diversity and Design Conference, Pisa, Italy, 2007: 209–213.
    [13] FALK L, ARVIDSSON C, BERGLUND S, et al. Simple derivation of crosseye jamming principles[C]. MilTech 2 Conference, Stockholm, Sweden, 2005: 93–100.
    [14] 侯向辉, 刘晓东, 饶志高, 等. 拖曳式诱饵释放时机和释放过程研究[J]. 航天电子对抗, 2010, 26(2): 6–8. doi: 10.3969/j.issn.1673-2421.2010.02.002

    HOU Xianghui, LIU Xiaodong, RAO Zhigao, et al. Study on towed decoy release occasion and release course[J]. Aerospace Electronic Warfare, 2010, 26(2): 6–8. doi: 10.3969/j.issn.1673-2421.2010.02.002
    [15] 石长安, 李为民, 付强, 等. 舷外诱饵及其战术使用方式分析[J]. 飞航导弹, 2004(11): 59–62. doi: 10.3969/j.issn.1009-1319.2004.11.012

    SHI Chang’an, LI Weimin, FU Qiang, et al. The analysis of the tactical operation on outboard active electronic bait[J]. Winged Missiles Journal, 2004(11): 59–62. doi: 10.3969/j.issn.1009-1319.2004.11.012
    [16] 邱杰, 笪林荣, 刘旭东. 舷外有源诱饵降落伞载荷运动仿真[J]. 海军航空工程学院学报, 2013, 28(4): 341–345. doi: 10.7682/j.issn.1673-1522.2013.04.001

    QIU Jie, DA Linrong, and LIU Xudong. Simulation of motion of parachute load of outboard active bait[J]. Journal of Naval Aeronautical and Astronautical University, 2013, 28(4): 341–345. doi: 10.7682/j.issn.1673-1522.2013.04.001
    [17] LEWIS B L and HOWARD D D. Security device[P]. US, 4006478, 1977.
    [18] SHIZUME P K. Angular deception countermeasure system[P]. US, 4117484, 1978.
    [19] DELANO R H. A theory of target glint or angular scintillation in radar tracking[J]. Proceedings of the IRE, 1953, 41(12): 1778–1784. doi: 10.1109/JRPROC.1953.274368
    [20] DUNN J H, HOWARD D D, and KING A M. Phenomena of scintillation noise in radar-tracking systems[J]. Proceedings of the IRE, 1959, 47(5): 855–863. doi: 10.1109/JRPROC.1959.287280
    [21] REDMILL P E. The principles of artificial glint jamming (cross eye)[R]. Royal Aircraft Establishment, Technical Note, AD336943L, 1963.
    [22] HUGGETT W K. Method and system of producing phase front distortion[P]. US, 5583504, 1996.
    [23] SHERMAN S M. Complex indicated angles applied to unresolved radar targets and multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(1): 160–170. doi: 10.1109/TAES.1971.310264
    [24] ROOME S J. Digital radio frequency memory[J]. Electronics & Communication Engineering Journal, 1990, 2(4): 147–153. doi: 10.1049/ecej:19900035
    [25] KWAK C M. Application of DRFM in ECM for pulse type radar[C]. Proceedings of the 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, 2009: 1–2.
    [26] SHARP E D and DIAB M A. Van Atta reflector array[J]. IRE Transactions on Antennas and Propagation, 1960, 8(4): 436–438. doi: 10.1109/TAP.1960.1144877
    [27] LARSEN T. Reflector arrays[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(6): 689–693. doi: 10.1109/TAP.1966.1138782
    [28] FALK L. The reciprocity principle and cross-eye jamming of monopulse target seekers[C]. RadioVetenskap och Kommunikation 99, Karlskrona, Sweden, 1999: 178–181.
    [29] FALK L. Cross-eye jamming and the principle of reciprocity[C]. Proceedings of the 3rd International AOC Conference, Zürich, Switzerland, 2000: 1–3.
    [30] TUCKER T W and VIDGER B. Cross-eye jamming effectiveness[EB/OL]. http://pdfs.semanticscholar.org/5d55/a82e208b5325d163c15d1ab18c2adf48b0be.pdf, 2009.
    [31] MEYER G J. Using cross-eye techniques to counter radio frequency agile monopulse processing[D]. [Master dissertation], Air University, 1997: 4–10.
    [32] DU PLESSIS W P. A comprehensive investigation of retrodirective cross-eye jamming[D]. [Ph.D. dissertation], University of Pretoria, 2010: 20–95.
    [33] DU PLESSIS W P, ODENDAAL J W, and JOUBERT J. Extended analysis of retrodirective cross-eye jamming[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2803–2806. doi: 10.1109/TAP.2009.2027353
    [34] HUGGETT W K. Method and system of producing phase front distortion[P]. US, 5583504, 1996.
    [35] SPARROW M J and CIKALO J. Cross-eye technique implementation[P]. US, 6885333B2, 2005.
    [36] 陈安娜. 对单脉冲雷达的相干两点源干扰机理研究[J]. 航空兵器, 2007(2): 7–11. doi: 10.3969/j.issn.1673-5048.2007.02.002

    CHEN Anna. Study of monopulse radar coherent dual-source interference mechanism[J]. Aero Weaponry, 2007(2): 7–11. doi: 10.3969/j.issn.1673-5048.2007.02.002
    [37] 李相平, 赵腊, 胡磊. 相干两点源对反舰导弹导引头的干扰研究[J]. 制导与引信, 2008, 29(3): 48–52. doi: 10.3969/j.issn.1671-0576.2008.03.010

    LI Xiangping, ZHAO La, and HU Lei. A study on the coherent dual point-source interference to the antiship missile seeker[J]. Guidance &Fuze, 2008, 29(3): 48–52. doi: 10.3969/j.issn.1671-0576.2008.03.010
    [38] 曹菲, 刘庆云, 辛增献, 等. 交叉眼干扰数学建模[J]. 现代雷达, 2013, 35(6): 69–72. doi: 10.3969/j.issn.1004-7859.2013.06.018

    CAO Fei, LIU Qingyun, XIN Zengxian, et al. Mathematical modeling of cross-eye jamming[J]. Modern Radar, 2013, 35(6): 69–72. doi: 10.3969/j.issn.1004-7859.2013.06.018
    [39] 张伟, 莫翠琼, 陈秋菊, 等. " 交叉眼”技术对角跟踪雷达导引头的干扰效果分析[J]. 航天电子对抗, 2015, 31(3): 14–16, 29. doi: 10.3969/j.issn.1673-2421.2015.03.004

    ZHANG Wei, MO Cuiqiong, CHEN Qiuju, et al. Effect analysis of cross-eye jamming on angle-tracking radar seeker[J]. Aerospace Electronic Warfare, 2015, 31(3): 14–16, 29. doi: 10.3969/j.issn.1673-2421.2015.03.004
    [40] DU PLESSIS W P, ODENDAAL J W, and JOUBERT J. Tolerance analysis of cross-eye jamming systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 740–745. doi: 10.1109/TAES.2011.5705705
    [41] DU PLESSIS W P, ODENDAAL J W, and JOUBERT J. Experimental simulation of retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 734–740. doi: 10.1109/TAES.2011.5705704
    [42] DU PLESSIS W P. Platform skin return and retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 490–501. doi: 10.1109/TAES.2012.6129650
    [43] DU PLESSIS W P. Limiting apparent target position in skin-return influenced cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 2097–2101. doi: 10.1109/TAES.2013.6558044
    [44] MUSSO C and CURT C. Robustness of a new angular counter-measure[C]. Proceedings of Radar 97, Edinburgh, 1997: 415–419.
    [45] HARWOOD N M, DAWBER W N, KING D J, et al. Multiple-element crosseye[J]. IET Radar, Sonar & Navigation, 2007, 1(1): 67–73. doi: 10.1049/iet-rsn:20060042
    [46] 刘天鹏. 多源反向交叉眼干扰技术研究[D]. [博士论文], 国防科学技术大学, 2016.

    LIU Tianpeng. Research on multiple-element retrodirective cross-eye jamming[D]. [Ph.D. dissertation], National University of Defense Technology, 2016.
    [47] LIU Tianpeng, LIAO Dongping, Wei Xizhang, et al. Performance analysis of multiple-element retrodirective cross-eye jamming based on linear array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1867–1876. doi: 10.1109/TAES.2015.140035
    [48] LIU Tianpeng, LIU Zhen, LIAO Dongping, et al. Platform skin return and multiple-element linear retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 821–835. doi: 10.1109/TAES.2016.140949
    [49] LIU Tianpeng, WEI Xizhang, and LI Lei. Multiple-element retrodirective cross-eye jamming against amplitude-comparison monopulse radar[C]. Proceedings of the 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 2014: 2135–2140.
    [50] LU Jianrong, LIU Tianpeng, LIU Zhen, et al. Analysis of multi-loop retrodirective cross-eye jamming system for large platform[C]. Proceedings of 2017 Progress in Electromagnetics Research Symposium - Spring, St. Petersburg, Russia, 2017: 565–572.
    [51] LIU Songyang, DONG Chunxi, XU Jin, et al. Analysis of rotating cross-eye jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 939–942. doi: 10.1109/LAWP.2014.2387423
    [52] 刘松杨, 董春曦, 董阳阳, 等. 旋转的正交多点源反向交叉眼干扰分析[J]. 电子与信息学报, 2016, 38(6): 1424–1430. doi: 10.11999/JEIT150919

    LIU Songyang, DONG Chunxi, DONG Yangyang, et al. Analysis of rotating orthogonal multiple elements retrodirective cross-eye jamming[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1424–1430. doi: 10.11999/JEIT150919
    [53] DU PLESSIS W P. Cross-eye gain in multiloop retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 875–882. doi: 10.1109/TAES.2016.140112
    [54] DU PLESSIS W P. Path-length effects in multiloop retrodirective cross-eye jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 626–629. doi: 10.1109/LAWP.2015.2465815
    [55] DU PLESSIS W P. Analysis of path-length effects in multiloop cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2266–2276. doi: 10.1109/TAES.2017.2690538
    [56] DU PLESSIS W P. Path-length compensation in multiloop retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(1): 397–406. doi: 10.1109/TAES.2018.2852378
    [57] NERI F. Experimental testing on cross-eye jamming[C]. AOC Conference, Las Vegas, USA, 2000: 1–36.
    [58] DU PLESSIS W P. Practical implications of recent cross-eye jamming research[EB/OL]. http://www.sige.ita.br/anais/XIVSIGE/pdf/IX_3.pdf, 2012.
    [59] Eurofighter Typhoon[EB/OL]. https://en.wikipedia.org/wiki/Eurofighter_Typhoon.
    [60] KRET. Missiles are not a problem: The SAP 518 jamming station protects fighter jets from guided missiles[EB/OL]. http://www.kret.com/en/news/3544/.
    [61] WANG Jianlu, ZHANG Yang, DAI Huanyao, et al. Response analysis of monopulse radar under retrodirective and non-retrodirective cross-eye jamming[C]. Proceedings of 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–5.
    [62] PETERSSON B. Error estimation in retrodirective channel implementation[C]. Proceedings of 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 2017: 120–125.
    [63] SERIN M, ONAT E, ORDUYILMAZ A, et al. Amplitude and phase difference tolerance analysis of cross-eye jamming technique[C]. Proceedings of the 21st Signal Processing and Communications Applications Conference (SIU), Haspolat, 2013: 1–4.
    [64] YANG Degui, LIANG Buge, and ZHAO Dangjun. Cross-eye gain distribution of multiple-element retrodirective cross-eye jamming[J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1170–1179. doi: 10.21629/JSEE.2018.06.06
    [65] MA Jiazhi, SHI Longfei, CUI Gang, et al. Further analysis of retrodirective cross-eye jamming: Polarization considerations[C]. Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 2018: 1–5.
    [66] MA Jiazhi, SHI Longfei, XIAO Shunping, et al. Mitigation of cross-eye jamming using a dual-polarization array[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 491–498. doi: 10.21629/JSEE.2018.03.06
  • 期刊类型引用(34)

    1. 王萍,高娇娇,张振亚,殷涛,王文凯. 基于UWB二维信道状态信息的室内人员摔倒检测方法. 传感器与微系统. 2025(02): 155-159 . 百度学术
    2. 宋永坤,晏天兴,张可,刘显,戴永鹏,金添. 基于点云时空特征的超宽带雷达轻量化人体行为识别方法. 雷达学报(中英文). 2025(01): 1-15 . 百度学术
    3. 任振裕,吉辰卿,余潮,陈万里,王锐. 面向毫米波动作识别的视觉辅助信道仿真技术. 雷达学报(中英文). 2025(01): 90-101 . 百度学术
    4. 丁传威,刘芷麟,张力,赵恒,周庆,洪弘,朱晓华. 基于MIMO雷达成像图序列的切向人体姿态识别方法. 雷达学报(中英文). 2025(01): 151-167 . 百度学术
    5. 李未一,杨健,方旖,贾勇,张伟. 基于散射分离的多通道雷达人体行为识别方法. 电波科学学报. 2025(01): 172-183 . 百度学术
    6. 周杨,李剑鹏,王知雨,梁庆真. 基于4D点云和航迹信息的人员跌倒检测方法. 电子技术应用. 2024(01): 120-124 . 百度学术
    7. 张敏,张欢,史晓娟,梁卓文,张娜. 老年患者跌倒检测系统的设计与实现. 中国医学装备. 2024(02): 157-161 . 百度学术
    8. 林志伟,刘梓隆,袁煜盛,倪沁玮,蔡志明. 基于微多普勒特征的人体动作识别. 软件工程. 2024(03): 21-25 . 百度学术
    9. 杨路,雷雨霄,余翔. 基于FMCW雷达的人体生命体征信号预测算法. 雷达科学与技术. 2024(01): 43-56 . 百度学术
    10. 陈媛,林碧霞,陈瑞娥,李开新,蔡真真,聂伟琳,吴林静. 住院患者跌倒预防护理决策支持系统的开发与应用. 中国卫生质量管理. 2024(07): 12-16+31 . 百度学术
    11. 孙梓誉,顾晶. 基于雷达时频变换和残差网络的人体行为检测. 电子测量技术. 2024(10): 27-33 . 百度学术
    12. 林倩,杨姝玥,刘林盛. 浅析毫米波雷达在汽车电子中的应用. 天津理工大学学报. 2024(05): 80-85 . 百度学术
    13. 余亚男,贾勇,杜玲丽,林凡强,郭世盛. 基于时空Transformer的毫米波雷达三维人体姿态重构. 信号处理. 2024(10): 1910-1920 . 百度学术
    14. 吴哲夫,闫鑫悦,施汉银,龚树凤,方路平. 基于双流CNN-BiLSTM的毫米波雷达人体动作识别方法. 传感技术学报. 2024(10): 1754-1763 . 百度学术
    15. 卓智海,祝文胜,王双龙. 基于双注意力机制的FMCW雷达人体行为识别. 北京信息科技大学学报(自然科学版). 2024(05): 58-66 . 百度学术
    16. 龚树凤,施汉银,闫鑫悦,吴哲夫. 基于度量学习的毫米波雷达少样本人体动作识别. 传感技术学报. 2024(11): 1921-1930 . 百度学术
    17. 高鹏,张岩,唐新余,王蒙,季文飞. 结合注意力机制的雷达多信号动作识别方法. 计算机技术与发展. 2023(01): 157-164 . 百度学术
    18. 张为威,金彤彤,孙童心,黄钰茹,郜洵,郑址洪. 智能居家养老场景下跌倒检测摄像头的交互设计. 计算机辅助设计与图形学学报. 2023(02): 238-247 . 百度学术
    19. 田钰琪,刘康,张远辉. 基于毫米波雷达点云的人体动作识别. 中国计量大学学报. 2023(01): 66-73+83 . 百度学术
    20. 许向阳,张俊强,沈月健,李猛. FMCW毫米波雷达跌倒检测算法研究. 软件工程. 2023(05): 6-10 . 百度学术
    21. 刘伟,蒋雅婷,郑子淳. Wi-Fi技术在人体行为感知中的应用探讨. 信息与电脑(理论版). 2023(05): 209-212 . 百度学术
    22. 刘树博,赖招宇,罗先喜,李跃忠,李智. 基于毫米波雷达与情感神经网络的室内人员跌倒检测算法. 中国电子科学研究院学报. 2023(03): 203-212 . 百度学术
    23. 李牧,王昭,骆宇. 基于TsFresh-Stacking的毫米波雷达人体跌倒检测方法. 网络安全与数据治理. 2023(06): 71-78 . 百度学术
    24. 汪超,刘思远,郑慧,卓智海. 基于轻量化卷积神经网络的人体动作识别. 北京信息科技大学学报(自然科学版). 2023(03): 22-26 . 百度学术
    25. 周乐,陈一畅,刘铭哲,朱超. 基于多传感器融合的人体跌倒检测系统. 空天预警研究学报. 2023(02): 129-135 . 百度学术
    26. 丰玉华,魏怡,刘力手,丰圆丹,李可. 面向跌倒行人的MP-YOLOv5检测模型. 重庆邮电大学学报(自然科学版). 2023(05): 960-970 . 百度学术
    27. 漆晶,汪正东,谢广智. 基于胸腔信号样本的FMCW雷达身份验证. 雷达科学与技术. 2023(05): 539-546+554 . 百度学术
    28. 瓦其日体,李刚,赵志纯,则正华. 基于直方图分析和自适应遗传的雷达道路目标识别特征优选方法. 雷达学报. 2023(05): 1014-1030 . 本站查看
    29. 马泽宇,叶宁,徐康,王甦,王汝传. 基于FMCW雷达和ResNeSt-GRU的行为识别方法. 计算机与现代化. 2023(11): 101-107+112 . 百度学术
    30. 赵举,郑建立. 基于多传感器和Bi-LSTM的个性化跌倒检测研究. 智能计算机与应用. 2022(04): 146-150+158 . 百度学术
    31. 夏燕超,王彦,郭灵. 用于人体姿态检测的微波雷达研制. 南华大学学报(自然科学版). 2022(02): 49-56 . 百度学术
    32. 方震,简璞,张浩,姚奕成,耿芳琳,刘畅宇,闫百驹,王鹏,杜利东,陈贤祥. 基于FMCW雷达的非接触式医疗健康监测技术综述. 雷达学报. 2022(03): 499-516 . 本站查看
    33. 翟靖宇,陈金立. 基于LSTM-Attention的毫米波雷达行人轨迹预测方法. 中国电子科学研究院学报. 2022(06): 534-541 . 百度学术
    34. 杨洲,李洋,段洁利,徐兴,余家祥,申东英,袁浩天. 基于毫米波雷达的果园单木冠层信息提取. 农业工程学报. 2021(21): 173-182 . 百度学术

    其他类型引用(40)

  • 加载中
图(16)
计量
  • 文章访问数: 10240
  • HTML全文浏览量: 3480
  • PDF下载量: 634
  • 被引次数: 74
出版历程
  • 收稿日期:  2019-01-29
  • 修回日期:  2019-02-20
  • 网络出版日期:  2019-02-01

目录

    /

    返回文章
    返回