用于检验散斑协方差矩阵估计性能的白化度评价方法

于涵 水鹏朗 杨春娇 施赛楠

于涵, 水鹏朗, 杨春娇, 施赛楠. 用于检验散斑协方差矩阵估计性能的白化度评价方法[J]. 雷达学报, 2017, 6(3): 285-291. doi: 10.12000/JR16146
引用本文: 于涵, 水鹏朗, 杨春娇, 施赛楠. 用于检验散斑协方差矩阵估计性能的白化度评价方法[J]. 雷达学报, 2017, 6(3): 285-291. doi: 10.12000/JR16146
Yu Han, Shui Penglang, Yang Chunjiao, Shi Sainan. Whitening Degree Evaluation Method to Test Estimate Accuracy of Speckle Covariance Matrix[J]. Journal of Radars, 2017, 6(3): 285-291. doi: 10.12000/JR16146
Citation: Yu Han, Shui Penglang, Yang Chunjiao, Shi Sainan. Whitening Degree Evaluation Method to Test Estimate Accuracy of Speckle Covariance Matrix[J]. Journal of Radars, 2017, 6(3): 285-291. doi: 10.12000/JR16146

用于检验散斑协方差矩阵估计性能的白化度评价方法

DOI: 10.12000/JR16146
基金项目: 国家自然科学基金(61671357)
详细信息
    作者简介:

    于 涵(1993–),女,籍贯山东,博士生,主要研究方向为海杂波特性分析等。E-mail: hyu_5@stu.xidian.edu.cn

    水鹏朗(1967–),男,籍贯陕西,博士,教授,研究方向为多速率滤波器理论及应用、图像处理和雷达目标检测。E-mail: plshui@xidian.edu.cn

    杨春娇(1993–),女,籍贯陕西,硕士生,主要研究方向为雷达目标检测等。E-mail: chunjiao_yang@163.com

    施赛楠(1990–),女,籍贯江苏,博士生,研究方向为雷达信号处理和微弱目标检测。E-mail: snshi@stu.xidian.edu.cn

    通讯作者:

    于涵   hyu_5@stu.xidian.edu.cn

  • 中图分类号:  TN957.51

Whitening Degree Evaluation Method to Test Estimate Accuracy of Speckle Covariance Matrix

Funds: The National Natural Science Foundation of China (61671357)
  • 摘要: 在海杂波背景下,散斑协方差矩阵估计性能严重影响着雷达自适应目标检测的准确性。针对不同散斑协方差矩阵估计方法,通常采用归一化F范数方法检验估计性能。但该检验方法需要已知真实协方差矩阵,在实际雷达系统中并不容易实现。鉴于该问题,该文提出了一种用于检验散斑协方差矩阵估计性能的白化度评价方法,充分利用了散斑协方差矩阵在白化滤波过程中的去相关作用。该方法将白化滤波后的杂波向量中脉冲间的相关程度作为评价指标,衡量散斑协方差矩阵估计方法的估计误差大小。与归一化F范数检验方法相比,该文提出的评价方法具有检验结果的一致性并且有效的避免了其在实测数据处理中的局限性。

     

  • 图  1  白化度评价结构示意图

    Figure  1.  Structural representation of WD evaluation

    图  2  3种估计方法的检测概率曲线

    Figure  2.  Detection probability curves of different estimators

    图  3  归一化F范数及白化度评价方法的性能对比

    Figure  3.  Performance comparison between NFN and WD evaluation

    图  4  3组实测数据的白化度及检测概率对比曲线

    Figure  4.  WD and detection probability of different datasets

    图  5  19组数据白化度及检测概率对比图

    Figure  5.  WD and detection probability of all datasets

  • [1] Conte E and Longo M. Characterisation of radar clutter as a spherically invariant random process[J]. IEE Proceedings F-Communications, Radar and Signal Processing, 1987, 134(2): 191–197. DOI: 10.1049/ip-f-1:19870035.
    [2] Rangaswamy M, Weiner D D, and Ozturk A. Non-Gaussian random vector identification using spherically invariant random processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 111–124. DOI: 10.1109/7.249117.
    [3] Pulsone N B. Adaptive signal detection in non-Gaussian interference[D]. [Ph.D. dissertation], Northeastern University, 1997.
    [4] Raghavan R S and Pulsone N B. A generalization of the adaptive matched filter receiver for array detection in a class of non-Gaussian interference[C]. Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop, Lexington, MA, USA, Mar. 1996: 499–517.
    [5] Conte E, Lops E, and Ricci G. Adaptive radar detection in compound-Gaussian clutter[C]. Proceedings of the European Signal Processing Conference, Edinburgh, Scotland, UK, Sep. 1994.
    [6] 何友, 简涛, 苏峰, 等. 非高斯杂波协方差矩阵估计方法及CFAR特性分析[J]. 中国科学: 信息科学, 2011, 41(1): 90–99. http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201101009.htm

    He You, Jian Tao, Su Feng, et al.. CFAR assessment of covariance matrix estimators for non-Gaussian clutter[J]. Scientia Sinica Informationis, 2011, 41(1): 90–99. http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201101009.htm
    [7] 孙艳丽, 谢宁波. 基于实测数据的单元平均CFAR检测器性能分析[J]. 兵器装备工程学报, 2016, 37(10): 84–87. DOI: 10.11809/scbgxb2016.10.017.

    Sun Yan-li and Xie Ning-bo. Performance analysis of cell average CFAR detector based on measured data[J]. Journal of Sichuan Ordnance, 2016, 37(10): 84–87. DOI: 10.11809/scbgxb2016.10.017.
    [8] Gini F and Greco M. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[J]. Signal Processing, 2002, 82(12): 1847–1859. doi: 10.1016/S0165-1684(02)00315-8
    [9] Pascal F, Chitour Y, Ovarlez J P, et al.. Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 34–48. DOI: 10.1109/TSP.2007.901652.
    [10] Anastassopoulos V, Lampropoulos G A, Drosopoulos A, et al.. High resolution radar clutter statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 43–60. DOI: 10.1109/7.745679.
    [11] Ward K D, Baker C J, and Watts S. Maritime surveillance radar. Part1: Radar scattering from the ocean surface[J]. IEE Proceedings F-Radar and Signal Processing, 1990, 137(2): 51–62. doi: 10.1049/ip-f-2.1990.0009
    [12] Zhou Jie, Chen Dong, and Sun Dewei. K distribution sea clutter modeling and simulation based on ZMNL[C]. Proceedings of the 2015 8th International Conference on Intelligent Computation Technology and Automation, Nanchang, China, Jun. 2015: 506–509. DOI: 10.1109/ ICICTA.2015.279.
    [13] 谢洪森, 邹鲲, 杨春英, 等. 海杂波协方差矩阵估计及其对目标检测性能的影响[J]. 系统工程与电子技术, 2011, 33(10): 2174–2178. DOI: 10.3969/j.issn.1001-506X.2011.10.06.

    Xie Hong-sen, Zou Kun, Yang Chun-ying, et al.. Sea clutter covariance matrix estimation and its impact on signal detection performance[J]. Systems Engineering and Electronics, 2011, 33(10): 2174–2178. DOI: 10.3969/ j.issn.1001-506X.2011.10.06.
    [14] Shui Peng-lang, Liu Ming, and Xu Shu-wen. Shape-parameter-dependent coherent radar target detection in k-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 451–465. DOI: 10.1109/ TAES.2015.140109.
    [15] Jansson M and Ottersten B. Structured covariance matrix estimation: A parametric approach[C]. Proceedings of the 2000 IEEE International Acoustics, Speech, and Signal Processing, Istanbul, Turkey, Jun. 2000, 5: 3172–3175.
    [16] Conte E, Lops M, and Ricci G. Adaptive detection schemes in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1058–1069. DOI: 10.1109/7.722671.
    [17] Shui Peng-lang, Shi Li-xiang, Yu Han, et al.. Iterative maximum likelihood and outlier-robust bipercentile estimation of parameters of compound-Gaussian clutter with inverse Gaussian texture[J]. IEEE Signal Processing Letters, 2016, 23(11): 1572–1576. DOI: 10.1109/LSP. 2016.2605129.
    [18] 宋运忠, 杨丽英. 基于L1范数最小化的逆协方差矩阵估计[J]. 河南师范大学学报(自然科学版), 2016, 44(5): 8–19. DOI: 10.16366/j.cnki.1000-2367.2016.05.002.

    Song Yun-zhong and Yang Li-ying. A approach to precision matrix estimation based on L1 norm minimization[J]. Journal of Henan Normal University (Natural Science Edition), 2016, 44(5): 8–19. DOI: 10.16366/j.cnki.1000-2367.2016.05.002.
  • 加载中
图(5)
计量
  • 文章访问数:  2183
  • HTML全文浏览量:  454
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-16
  • 修回日期:  2017-04-24
  • 网络出版日期:  2017-06-28

目录

    /

    返回文章
    返回