互质层析SAR最少航过数量估计方法

于龙龙 冯东 王建 黄晓涛

于龙龙, 冯东, 王建, 等. 互质层析SAR最少航过数量估计方法[J]. 雷达学报, 2022, 11(4): 618–636. doi: 10.12000/JR22047
引用本文: 于龙龙, 冯东, 王建, 等. 互质层析SAR最少航过数量估计方法[J]. 雷达学报, 2022, 11(4): 618–636. doi: 10.12000/JR22047
YU Longlong, FENG Dong, WANG Jian, et al. Estimation of the minimum number of acquisitions for coprime tomographic synthetic aperture radar[J]. Journal of Radars, 2022, 11(4): 618–636. doi: 10.12000/JR22047
Citation: YU Longlong, FENG Dong, WANG Jian, et al. Estimation of the minimum number of acquisitions for coprime tomographic synthetic aperture radar[J]. Journal of Radars, 2022, 11(4): 618–636. doi: 10.12000/JR22047

互质层析SAR最少航过数量估计方法

DOI: 10.12000/JR22047
基金项目: 国家自然科学基金(62101562)
详细信息
    作者简介:

    于龙龙(1988-),男,宁夏固原人,国防科技大学电子科学学院博士生,研究方向为层析SAR三维成像技术

    冯 东(1991-),男,重庆涪陵人,国防科技大学电子科学学院讲师,主要研究方向为机载SAR三维成像技术

    王 建(1981–),男,湖北宜城人,国防科技大学电子科学学院讲师、博士,主要研究方向为宽带雷达系统与智能信息处理技术

    黄晓涛(1972-),男,湖北武汉人,国防科技大学电子科学学院教授、博士生导师,主要研究方向为雷达成像技术、超宽带雷达成像技术以及阵列信号处理技术等

    通讯作者:

    黄晓涛 xthuang@nudt.edu.cn

  • 责任主编:仇晓兰 Corresponding Editor: QIU Xiaolan
  • 中图分类号: TN957.52

Estimation of the Minimum Number of Acquisitions for Coprime Tomographic Synthetic Aperture Radar

Funds: The National Natural Science Foundation of China (62101562)
More Information
  • 摘要: 在层析SAR技术的实际应用中,航过数量通常受高昂成本等因素的限制。互质层析SAR技术通过稀疏分布航过位置、延长基线孔径长度,可以降低所需的航过数量。当采用子空间方法开展互质层析SAR重构处理时,为了获得可靠的层析图,研究最少航过数量估计问题。考虑到子空间方法的重构性能受多个参数的影响,因此航过数量的选择必须综合考虑所有相关参数对重构结果的影响。为此,通过样本特征值分析方式建立子空间方法的可靠性保证条件。根据这个可靠性保证条件,提出了一种估计最少航过数量的方法。与传统的最少航过数量估计方法相比,所提方法的优势在于:同时考虑所有的相关参数,且具有解析的数学描述式。最后,仿真实验证实由所提方法估算的航过数量确实接近最小,且能够保证重构结果可靠。

     

  • 图  1  互质层析SAR的数据获取几何

    Figure  1.  The acquisition geometry of the coprime TomoSAR

    图  2  本文提出的最少航过数量估计方法的流程图

    Figure  2.  The flow chart for the propose approach to estimate the minimum number of acquisitions

    图  3  基于样本特征值检测方法的正确检测概率随航过数量的变化曲线(K=2; SNR1=0 dB, SNR2=10 dB; Δh=1 m)

    Figure  3.  Successful detection rate varies with the number of acquisitions (K=2; SNR1=0 dB, SNR2=10 dB; Δh=1 m)

    图  4  高度估计的RMSE随航过数量的变化(K=2; SNR1=0 dB, SNR2=10 dB; Δh=1 m)

    Figure  4.  The RMSE of the height estimation varies with the number of acquisitions (K=2; SNR1=0 dB, SNR2=10 dB; Δh=1 m)

    图  5  基于样本特征值的信号检测方法的正确检测概率随高度间隔的变化曲线(K=2; SNR1=0 dB, SNR2=10 dB; ρh=1 m)

    Figure  5.  Successful detection rate varies with the height separation (K=2; SNR1=0 dB, SNR2=10 dB; ρh=1 m)

    图  6  高度估计的RMSE随高度间隔的变化曲线(K=2; SNR1=0 dB, SNR2=10 dB; ρh=1 m)

    Figure  6.  The RMSE of the height estimation varies with the height separation (K=2; SNR1=0 dB, SNR2=10 dB; ρh=1 m)

    图  7  基于样本特征值检测方法的正确检测概率随航过数量的变化曲线(Δh=1 m; L=20;所有散射点信噪比均等于0 dB)

    Figure  7.  Successful detection rate varies with the number of acquisitions (Δh=1 m; L=20; all the SNRs=0 dB)

    图  8  高度估计的RMSE随航过数量的变化曲线(Δh=1 m; L=20;所有散射点信噪比均等于0 dB)

    Figure  8.  The RMSE of the height estimation varies with the number of acquisitions (Δh=1 m; L=20; all the SNRs=0 dB)

    图  9  基于样本特征值检测方法的正确检测概率随高度间隔的变化曲线(L=20;所有散射点信噪比均等于0 dB;ρh=1 m)

    Figure  9.  Successful detection rate varies with the height separation (L=20; all the SNRs=0 dB; ρh=1 m)

    图  10  高度估计的RMSE随高度间隔的变化曲线(L=20;所有散射点信噪比均等于0 dB;ρh=1 m)

    Figure  10.  The RMSE of the height estimation varies with the height separation (L=20; all the SNRs=0 dB; ρh=1 m)

    图  11  最少航过数量与信噪比之间的约束关系(K=2; Δh=1 m; L=10)

    Figure  11.  The constraint relationship between the minimum number of acquisitions and the SNR (K=2; Δh=1 m; L=10)

    图  12  |<a1, a2>|/M随航过数量的变化(d=7.5 m; K=2; Δh=1 m)

    Figure  12.  |<a1, a2>|/M varies with the number of acquisitions (d=7.5 m; K=2; Δh=1 m)

    图  13  高度估计RMSE随航过数量和信噪比的相变图(K=2; Δh=1 m; L=10)

    Figure  13.  The phase transition of the RMSE as a function of the number of acquisitions and the SNR (K=2; Δh=1 m; L=10)

    图  14  由文献[9]方法设计的均匀层析SAR和互质层析SAR的重构结果[均匀层析SAR (M=16; d=7.5 m; B=112 m);互质层析SAR (M1=9, M2=8; d=1.8 m; B=112 m)]

    Figure  14.  The reconstruction results from the uniform TomoSAR and the coprime TomoSAR which are designed by Ref. [9] vary with the SNR [the uniform TomoSAR (M=16; d=7.5 m; B=112 m); the coprime TomoSAR (M1=9, M2=8; d=1.8 m; B=112 m)]

    图  15  存在基线偏差情况下和理想情况下的正确检测概率(K=2;所有散射点的信噪比均等于0 dB;L=20;ρh=1 m)

    Figure  15.  Successful detection rate calculated from the deviated tracks and the nominal tracks (K=2; all the SNRs=0 dB; L=20; ρh=1 m)

    图  16  存在基线偏差情况下和理想情况下的高度估计的RMSE(实验参数的设置与图 15中的参数相等)

    Figure  16.  RMSE of the height estimation calculated from the deviated tracks and the nominal tracks (the simulation parmeters are seted as the same as in Fig. 15)

    表  1  由本文方法计算得到的最少航过数量和最小航过间隔(K=2; SNR1=0 dB, SNR2=10 dB; Δh=1 m)

    Table  1.   The minimum number of acquisitions and the minimum inter-acquisition spacing calculated by the proposed approach (K=2; SNR1=0 dB, SNR2=10 dB; Δh=1 m)

    视数均匀层析SAR互质层析SAR
    L=10Mmin=20; dM=7.0 mMmin=13;dM=4.6 m
    L=20Mmin=15; dM=7.3 mMmin=9; dM=7.3 m
    L=50Mmin=12; dM=7.0 mMmin=8; dM=5.5 m
    下载: 导出CSV

    表  2  基于样本特征值检测方法所需的最少航过数量的理论估计值和实测估计值(K=2; SNR1=0 dB, SNR2=10 dB; Δh=1 m)

    Table  2.   The theoretical estimate and the measured estimate of the minimum number of acquisitions in the sense of the sample-eigenvalue-based detection (K=2; SNR1=0 dB, SNR2=10 dB; Δh=1 m)

    视数均匀层析SAR互质层析SAR
    理论值实测值理论值实测值
    L=1020161311
    L=20151398
    L=50121087
    下载: 导出CSV

    表  3  基于样本特征值检测方法的实测分辨率(K=2; SNR1=0 dB, SNR2=10 dB; ρh=1 m)

    Table  3.   The measured tomographic resolution of the sample-eigenvalue-based detection (K=2; SNR1=0 dB, SNR2=10 dB; ρh=1 m)

    实验参数分辨的实测值(m)瑞利分辨率(m)
    L=10;均匀层析SAR
    (Mmin=20, dM=7.0 m)
    0.731.69
    L=10;互质层析SAR
    (Mmin=13; dM=4.6 m)
    0.641.22
    L=20;均匀层析SAR
    (Mmin=15; dM=7.3 m)
    0.732.19
    L=20;互质层析SAR
    (Mmin=9; dM=7.3 m)
    0.691.71
    L=50;均匀层析SAR
    (Mmin=12; dM=7.0 m)
    0.702.91
    L=50;互质层析SAR
    (Mmin=8; dM=5.5 m)
    0.692.55
    下载: 导出CSV

    表  4  本文方法计算所得的最少航过数量和最小航过间隔(Δh=1 m; L=20;所有散射点信噪比均等于0 dB)

    Table  4.   The minimum number of acquisitions and the minimum inter-acquisition spacing calculated by the proposed approach (Δh=1 m; L=20; all the SNRs=0 dB)

    散射点数量均匀层析SAR互质层析SAR
    K=2Mmin=18; dM=7.4 mMmin=10; dM=6.1 m
    K=3Mmin=23; dM=7.2 mMmin=10; dM=7.1 m
    下载: 导出CSV

    表  5  基于样本特征值检测方法所需的最少航过数量的理论估计值和实测估计值(Δh=1 m; L=20;所有散射点信噪比均等于0 dB)

    Table  5.   The theoretical estimate and the measured estimate of the minimum number of acquisitions in the sense of the sample-eigenvalue-based detection (Δh=1 m; L=20; all the SNRs=0 dB)

    视数均匀层析SAR互质层析SAR
    理论值实测值理论值实测值
    K=218151010
    K=323211010
    下载: 导出CSV

    表  6  基于样本特征值检测方法的实测分辨率(L=20;所有散射点信噪比均等于0 dB;ρh=1 m)

    Table  6.   The measured tomographic resolution of the sample-eigenvalue-based detection (L=20; all the SNRs=0 dB; ρh=1 m)

    实验参数分辨的实测值(m)瑞利分辨率(m)
    K=2;均匀层析SAR
    (Mmin=18;dM=7.4 m)
    0.751.78
    K=2;互质层析SAR
    (Mmin=10; dM=6.1 m)
    0.721.47
    K=3;均匀层析SAR
    (Mmin=23; dM=7.2 m)
    0.901.42
    K=3;互质层析SAR
    (Mmin=10; dM=7.1 m)
    0.881.26
    下载: 导出CSV
  • [1] RAMBOUR C, BUDILLON A, JOHNSY A C, et al. From interferometric to tomographic SAR: A review of synthetic aperture radar tomography-processing techniques for scatterer unmixing in urban areas[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2): 6–29. doi: 10.1109/MGRS.2019.2957215
    [2] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873
    [3] YU Longlong, HUANG Xiaotao, FENG Dong, et al. Coprime synthetic aperture radar tomography[C]. 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 2021: 1–6.
    [4] YU Longlong, FENG Dong, WANG Jian, et al. An efficient reconstruction approach based on atomic norm minimization for coprime tomographic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4503705. doi: 10.1109/LGRS.2022.3143662
    [5] VAIDYANATHAN P P and PAL P. Sparse sensing with Co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    [6] LOMBARDINI F and PARDINI M. 3-D SAR tomography: The multibaseline sector interpolation approach[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 630–634. doi: 10.1109/LGRS.2008.2001283
    [7] NANNINI M, REIGBER A, and SCHEIBER R. A study on irregular baseline constellations in SAR tomography[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
    [8] WEI Lianhuan, FENG Qiuyue, LIU Shanjun, et al. Minimum redundancy array—A baseline optimization strategy for urban SAR tomography[J]. Remote Sensing, 2020, 12(18): 3100. doi: 10.3390/rs12183100
    [9] NANNINI M, SCHEIBER R, and MOREIRA A. Estimation of the minimum number of tracks for SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 531–543. doi: 10.1109/TGRS.2008.2007846
    [10] ZHU Xiaoxiang and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. doi: 10.1109/TGRS.2011.2160183
    [11] ZHU Xiaoxiang, GE Nan, and SHAHZAD M. Joint sparsity in SAR tomography for urban mapping[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1498–1509. doi: 10.1109/JSTSP.2015.2469646
    [12] NADLER B. Finite sample approximation results for principal component analysis: A matrix perturbation approach[J]. The Annals of Statistics, 2008, 36(6): 2791–2817. doi: 10.1214/08-aos618
    [13] NADAKUDITI R R and EDELMAN A. Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2625–2638. doi: 10.1109/TSP.2008.917356
    [14] FORNARO G, VERDE S, REALE D, et al. CAESAR: An approach based on covariance matrix decomposition to improve multibaseline-multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2050–2065. doi: 10.1109/TGRS.2014.2352853
    [15] NAVNEET S, KIM J W, and LU Zhong. A new InSAR persistent scatterer selection technique using top eigenvalue of coherence matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1969–1978. doi: 10.1109/TGRS.2017.2771386
    [16] PAUCIULLO A, REALE D, FRANZÉ W, et al. Multi-look in GLRT-based detection of single and double persistent scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5125–5137. doi: 10.1109/TGRS.2018.2809538
    [17] D’HONDT O, LÓPEZ-MARTÍNEZ C, GUILLASO S, et al. Nonlocal filtering applied to 3-D reconstruction of tomographic SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 272–285. doi: 10.1109/TGRS.2017.2746420
    [18] ZHU Xiaoxiang and BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. doi: 10.1109/MSP.2014.2312098
    [19] JOHNSON B A, ABRAMOVICH Y I, and MESTRE X. MUSIC, G-MUSIC, and maximum-likelihood performance breakdown[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3944–3958. doi: 10.1109/TSP.2008.921729
    [20] SHAGHAGHI M and VOROBYOV S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3251–3265. doi: 10.1109/TSP.2015.2422675
    [21] FRIEDLANDER B. The root-MUSIC algorithm for direction finding with interpolated arrays[J]. Signal Processing, 1993, 30(1): 15–29. doi: 10.1016/0165-1684(93)90048-F
    [22] RUBSAMEN M and GERSHMAN A B. Direction-of-arrival estimation for nonuniform sensor arrays: From manifold separation to fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 588–599. doi: 10.1109/TSP.2008.2008560
    [23] STOICA P and NEHORAI A. MUSIC, maximum likelihood, and Cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(5): 720–741. doi: 10.1109/29.17564
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  833
  • HTML全文浏览量:  492
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2022-05-12
  • 网络出版日期:  2022-05-29
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回