Processing math: 100%

一种基于极化圆周SAR图像的陆上桥梁提取方法

谭向程 安道祥 陈乐平 周智敏

陈帅霖, 罗丰, 张林让, 胡冲, 陈世超. 基于动态规划的机动目标加权自适应相参积累方法[J]. 雷达学报, 2017, 6(3): 309-315. doi: 10.12000/JR17002
引用本文: 谭向程, 安道祥, 陈乐平, 等. 一种基于极化圆周SAR图像的陆上桥梁提取方法[J]. 雷达学报, 2021, 10(3): 402–415. doi: 10.12000/JR20117
Chen Shuailin, Luo Feng, Zhang Linrang, Hu Chong, Chen Shichao. Weighted Adaptive Step Coherent Integration Method for Maneuvering Target Based on Dynamic Programming[J]. Journal of Radars, 2017, 6(3): 309-315. doi: 10.12000/JR17002
Citation: TAN Xiangcheng, AN Daoxiang, CHEN Leping, et al. A land bridge extraction method based on polarized circular synthetic aperture radar images[J]. Journal of Radars, 2021, 10(3): 402–415. doi: 10.12000/JR20117

一种基于极化圆周SAR图像的陆上桥梁提取方法

DOI: 10.12000/JR20117
基金项目: 湖南省自然科学基金(2020JJ5661),国家自然科学基金(61571447),装备预研基金(61404130304, 61404130311, 61404130309)
详细信息
    作者简介:

    谭向程(1996–),男,四川广安人,现为国防科技大学电子科学学院硕士生,主要研究方向为SAR图像解译

    安道祥(1982–),男,吉林东丰人,博士,现为国防科技大学电子科学学院副教授,主要研究方向为机载低频单/双站超宽带SAR成像、机载CSAR成像、视频SAR成像、重轨InSAR和SAR图像解译等

    陈乐平(1988–),男,福建福州人,博士,现为国防科技大学电子科学学院讲师,主要研究方向为高分辨率合成孔径雷达成像

    周智敏(1957–),男,河北易县人,现为国防科技大学电子科学学院教授,主要研究方向为超宽带雷达技术

    通讯作者:

    安道祥 daoxiangan@nudt.edu.cn

  • 责任主编:杨健 Corresponding Editor: YANG Jian
  • 中图分类号: TP701

A Land Bridge Extraction Method Based on Polarized Circular Synthetic Aperture Radar Images

Funds: The Natural Science Foundation of Hunan Province (2020JJ5661), The National Natural Science Foundationof China (61571447), The Equipment Pre-Research Foundation (61404130304, 61404130311, 61404130309)
More Information
  • 摘要: 桥梁作为重要的人造目标,一直都是合成孔径雷达(SAR)图像解译的重要对象之一。目前针对桥梁检测问题已开展了较多研究,核心思想是:首先提取出河流水体,然后再根据河流与桥梁的位置关系检测桥梁。然而,已有的桥梁检测方法依赖于河流提取,很难实现陆上桥梁检测。因为陆上桥梁下方的背景不再是河流,而是陆地,其散射特性、形状分布与河流不同,不能采用传统的水体提取方法来检测陆地背景,进而无法利用桥梁的位置先验知识定位桥梁。针对该问题,该文提出了一种基于极化圆周SAR(CSAR)图像的陆上桥梁检测方法。首先,利用观测场景的圆周极化熵(CPE)实现疑似桥梁目标与陆地背景的分离(该实验中桥梁的CPE均值为0.4018,陆地背景的CPE均值为0.7819,两者具有明差别);然后,根据地物目标的极化熵方差特征和桥梁尺寸特性,抑制虚假目标;最后,根据桥梁的几何特征实现陆上桥梁的准确提取。该文所提方法解决了传统桥梁检测方法需要基于河流提取结果才能实现桥梁检测的问题。机载L波段极化CSAR实测数据处理结果证明了所提方法的正确性、有效性和实用性。

     

  • 相参积累是一种在噪声背景下有效提高雷达目标检测性能的方法。但是高速机动目标复杂的运动特性会使雷达回波不可避免地产生距离徙动,多普勒扩展和多普勒模糊,大大削弱了传统方法的检测性能,甚至会使传统方法失效[1]。这种情况下,文献[2,3]采用霍夫变换方法,沿着目标轨迹对每个目标的回波数据进行带有距离补偿的非相参积累,将目标能量积累到参数空间中的一点,易于在参数空间检测。为了进一步利用目标的相位信息,文献[4]采用Keystone变换(KT)对目标进行距离补偿后的相参积累,更加高效地积累了目标能量,但该方法存在速度模糊的问题。文献[5]将分数阶傅里叶变换与Keystone变换相结合,适用于带有速度模糊的匀加速目标,但该方法的处理流程较为复杂。文献[6]提出的相参霍夫变换(CHT)可以看作是文献[7]提出的Radon-Fourier变换(RFT)的一个特例,这两种方法将距离补偿与相参积累相结合,显著提高了雷达的检测性能,RFT的扩展形式还能有效避免速度模糊。为了检测具有严重多普勒扩展的机动目标。文献[8]采用参数化的方程来描述非匀速直线运动的目标轨迹,通过搜索该方程中的参数,广义RFT方法能够沿着弯曲的目标轨迹进行能量积累。但是,轨迹方程的阶数随着目标机动性的增强而增大,在检测强机动目标时计算复杂度显著增高。文献[9]将RFT方法扩展到空时频多维度联合处理领域中,取得了较为优秀的检测性能,形成了比较系统的理论框架和技术体系。文献[10]将RFT算法应用于双基地雷达系统,解决了该系统中非线性相位回波的目标运动补偿问题,并在频域完成了算法的快速实现。上述基于KT和RFT的算法都需要估计出目标的具体运动参数,再对目标运动带来的距离和多普勒徙动进行补偿。然而,当目标在观测时间内进行机动,即目标的运动参数发生了突变,或目标的运动参数过于复杂,上述运动参数估计与补偿类的算法就会失效。

    检测前跟踪(Track Before Detect, TBD)是一种常用的能量积累方法。基于动态规划的检测前跟踪(Dynamic Programming-TBD, DP-TBD)方法[11]能够对弱机动目标进行检测,许多种改进的DP-TBD方法广泛应用于光学、红外以及雷达领域[12,13]。但是TBD算法通常应用于扫描到扫描的场景,并不适用于长时间积累模式下脉冲到脉冲的场景。此外,DP-TBD类的算法对强机动目标的检测性能较差。

    为了解决上述问题,该文提出了一种基于动态规划的加权自适应步长相参积累方法,所提方法采用动态规划算法的阶段性最优化思想,能够求解出机动目标复杂而不断变化的运动参数,避免了传统方法繁琐的只适用于固定运动方式的运动参数估计;该方法结合了动态规划与加权自适应相参积累,能够避免多普勒模糊,高效的对机动目标的距离徙动与多普勒扩散进行补偿。所提算法的递推特性能够使该方法对任意机动方式的目标进行检测与跟踪。

    假设机动目标相对雷达径向运动,雷达在目标方向发射K个脉冲,重复周期为Tr。信号预处理之后,k时刻的目标基带回波可以表示为:

    sk=Askexp(j2πfd(k)kTr)+nk (1)

    其中,A为幅度, sk为回波信号在快时间上的复包络,fd(k)为目标机动带来的时变瞬时多普勒频率,nk为方差为1的复高斯噪声。假设在较短时间内的观测过程中目标回波没有起伏。

    将所有回波排列在时间-距离的2维空间,分别用脉冲重复周期和雷达距离单元对时间坐标和距离坐标进行归一化。将一个重复周期称为一帧,雷达回波中第k帧第n个距离单元的测量表示为zk,第k帧所有N个距离单元中的测量值表示为 Zk= [z1z2...zN]T

    该模型中机动目标的径向速度是时变的,会带来非线性的位移和多普勒频移。因此,整个观测过程中目标回波的频谱在距离-多普勒平面内形成了一条不规则的曲线。所以传统方法很难对无规律的距离徙动和多普勒扩散进行补偿。

    为了最大程度上地沿着目标轨迹积累能量,采用动态规划[11]的思想对机动目标进行每一帧位置与速度的阶段性最优搜索。此外,充分利用目标回波的幅度与相位信息,同时对距离徙动与多普勒扩散进行补偿。

    雷达记录的K个脉冲的所有观测值构成一个N×K的2维矩阵,如下:

    Z=[Z1Z2···ZK] (2)

    令目标状态为 Xk=(xk,˙xk)T,其中,xk为目标距离, ˙xk为目标速度。定义目标轨迹为第1帧到第K帧的连续状态序列,则观测时间内的目标航迹为:

    XK={X1X2···XK} (3)

    由于目标速度未知,需要对目标所有可能的速度进行搜索。假设目标的最大速度为Vmax,将目标的运动速度范围[–Vmax, Vmax]平均分为M份,则所有搜索速度为:{vm, m=1:M}。每一帧目标的运动速度将通过这M个搜索通道进行估计。M的取值取决于所需的速度估计精度。根据多普勒频率与目标速度和雷达波长 λ的关系 fd=2v/λ,直接使用速度信息进行相位补偿,避免多普勒速度模糊。本文(Dynamic Programing (DP)-based Weigh-ted Adaptive Coherent Integration, DPWACI)算法的流程图如图1所示,具体步骤如下。

    图  1  本文算法流程图
    Figure  1.  Flow chart of this paper algorithm

    对第1帧的所有状态X1

    I(X1)=Z1 (4)
    Ψ(1)=0 (5)

    其中,I(·)为积累值函数,表示动态规划处理后的积累能量,Ψ(·)为转移函数,记录了每一帧的状态转移过程。

    当2≤ kK时,对所有状态Xk,有

    I(Xk)=maxm=1:M[I(Xk1)exp(j4πvmTrλ)]2M+Zk (6)
    Ψ(Xk)=argmaxm=1:M[I(Xk1)exp(j4πvmTrλ)]2M (7)

    其中,max[·]表示求取上一帧最有可能转移到当前帧的状态,上一帧的有效转移状态由速度搜索通道和可能的位置偏移确定。由于脉冲间隔时间很短,第k–1帧到第k帧的位置转移只有3种情况:向前一个距离单元;停留在当前单元;向后一个距离单元。而搜索速度的正负确定了移动方向,所以共有2×M个候选有效转移状态,式(6)和式(7)中max[·]的下标为2M。式(6)中上一帧积累值函数的多普勒频移被补偿到了当前时刻,并与当前观测值进行相参积累。该递推过程无需对目标的具体运动参数进行估计,而是通过动态规划方法分依次搜索并记录。

    式(6)的过程相当于两脉冲相参积累,为了减轻复噪声的影响,并充分利用后续脉冲的相参特性,后L个脉冲被用来进行相参积累。由于运动惯性,短时间内的速度变化较小。为了减轻距离徙动发生时的影响,并保证积累效果,将L设为:

    L=round(ρ/Vmax/Tr/4) (8)

    其中, ρ为距离单元,round(·)表示四舍五入。加入算数平均,并将Zk放入中括号内,有

    I(Xk)=maxm=1:M{I(Xk1)exp(j4πvmTrλ)+1LLl=1Zk+lexp(j4πvmlTrλ)}2M+Zk (9)

    式(9)中,较长的L有利于检测低速目标,但不利于检测高速目标,反之亦然。所以固定的步长L无法同时适用于高速与低速情况。未解决这个问题,根据搜索速度引入自适应步长,有

    Lm=round[min(14ρvmTr,ρVmaxTr)],m=1:M (10)

    其中,min(·)用来限制低速通道下的步长。

    由于惯性,目标的运动速度是连续变化的,所以下一帧目标的可能速度与当前速度越接近概率越高。假设目标在相邻两帧内最大速度变化量为Δυ,当前速度为υ,则下一帧目标速度范围在υ±Δυ之内。下一帧在进行状态转移时,对当前速度相邻的速度通道内的状态赋予较大权值,对间隔较远的通道内的状态赋予较小权值。假设第k帧时,某一状态转移的权系数为Wkn=[wk(1), ···, wk(M)],各速度搜索通道对应的权系数计算方法为:

    {wk(m)=1(|mkm|(M1)/2)Swk(m)|wk(m)<0=0,m=1,···,M (11)

    其中,mk为当前所在状态转移速度通道,S为权系数形状参数,S的取值与预估的目标机动性相关。目标机动性较强时,S取值较大,权系数曲线的波峰较扁平,物理意义为目标转移到相邻速度通道的范围越大,反之亦然。S的具体数值通过最大变化速度Dv覆盖的速度通道数来确定。在目标可能的机动范围内权值较大,在机动范围外,随着搜索速度与当前速度差的增大权系数逐渐减小。为保证算法能够覆盖目标机动范围,我们令偏移当前速度mmax个通道时的权系数wk(mmax)不小于0.95,形状参数S可由式(12)确定。

    Slg(10.95)/lg(10.95)lg(|(M1)/2mmax|(M1)/2)lg(|(M1)/2mmax|(M1)/2)=lg0.05lg(|(M1)/2mmax|)lg(M1)+lg2 (12)

    M=41为例,不同参数的权系数曲线如图2所示。

    图  2  权系数曲线
    Figure  2.  Curve of weight coefficient

    式(11)为某一个状态的权系数计算公式,状态空间中的全部N个状态都需要相似的权系数计算,得到加权矩阵Wk=[Wk1, ···, WkN] T

    经过加权处理以及自适应补偿处理的改进递推公式为:

    I(Xk)=maxm=1:M{WkI(Xk1)exp(j4πvmTrλ)+1Lm[Lml=0Zk+lexp(j4πvmlTrλ)]} (13)

    递归过程在第kLmax帧结束,其中, Lmax= round(ρ/Vmax/Tr)

    在式(13)中,第k –1帧积累值函数和第k+1到第k+Lm帧观测值的多普勒频移同时被补偿到了当前时刻,距离徙动也被动态规划的位置搜索间接补偿。加权和自适应补偿处理进一步提高了搜索和积累效率。该递归过程相当于一个马尔科夫过程,递推的能量积累不受整个观测过程中多普勒扩散的影响。

    k=KLmax:K时,I(Xk)的值保持不变。寻找I(XK)的最大值,当最大值超过门限VT,宣布目标被检测到,并得到最终的目标位置与速度。VT的计算需要I(XK)准确的概率分布函数,不幸的是该分布函数难以计算,这是因为:(a)动态规划中的max[·]运算带来了非线性,非高斯的过程,(b)动态规划中的状态实际上是不独立的,(c)加权与自适应补偿处理带来了额外的复杂性。因此,门限计算由现有的基于极值理论的计算机拟合仿真方法[14]得到。

    状态转移函数 Ψ()记录了整个递推过程中的状态转移过程,如果需要,该机动目标每一帧的位置和速度可以通过如下的回溯过程得到。

    k=K, K–1, ···, 1,对过门限的状态Xk,有

    ˆXk=Ψ(ˆXk+1) (14)

    可得到观测过程中全部K帧的估计航迹 ˆXK= {ˆX1,ˆX2,···,ˆXK}

    本文算法的运算量与目标的速度范围密切相关,在目标初速较高的情况下,传统算法与本文算法都需要在较大的速度范围内进行速度搜索,所以除了距离单元数N,搜索通道数M也是运算量分析的一个重要参数。本文算法的核心递推公式(式(13))的运算量为:

    F=M[NIm+NLIm+(NL+2)Ia]+NmaxC(2M) (15)

    其中,Im为复乘运算,Ia为复加运算,maxC为复最大值运算。式(13)中的实运算相较于复运算为低阶运算,可以省略,自适应步长的运算按照最大步长近似。1次复乘运算相当于6次实运算,1次复加运算相当于2次实运算,1次复最大值运算相当于3次实运算加1次实最大值运算。将上述关系代入式(15),整个递推过程的运算量为:

    F=KF=K[(10+8L)MN+N(3+3/2)2M] (16)

    F中的参量统一由n来代替,则算法的计算复杂度为:

    O(F(n))=O(n[(10+8L)n2+n(3+3/2)2n])=O(n3) (17)

    RFT与MTD算法的计算复杂度分别为O(n3)与O(n2log2n)[7],虽然与本文算法相比运算量相仿或更低,但这两种方法无法对运动参数发生突变的机动目标进行检测。

    假设雷达载频150 MHz,距离分辨力10 m,脉冲重复周期2 ms,观测帧数500,截取距离单元数200。100 km外的目标以初速度v0=27 m/s相向雷达飞行。目标的加速度在观测过程中发生了两次改变,以模拟目标的机动,观测过程中的3个加速度分别为:在前150个脉冲内a1=200 m/s2,在中间150个脉冲内a2=50 m/s2,在最后200个脉冲内a3=300 m/s2。加加速度j0服从均匀分布U(–5, 5) m/s3,模拟额外机动性。设置本文算法中的参数为Vmax=500 m/s, M=40, SNR为–5 dB时,本文算法处理结果如图3所示。

    图  3  DPWACI处理结果
    Figure  3.  Result of DPWACI

    DPWACI估计出的位置为第87个距离单元,速度为220 m/s,与仿真参数相符。该仿真条件下没有速度模糊,但低信噪比下RFT和MTD失效,提高信噪比至10 dB, RFT和MTD的处理结果分别如图4图5所示。由于距离徙动与多普勒扩散,MTD与RFT算法都无法积累出峰值,MTD算法没有距离补偿和多普勒补偿,最终积累的能量分散到了多个距离单元与多普勒通道;RFT算法实现了一部分距离补偿,但无法处理高阶运动分量和参数突变带来的多普勒扩散,最终积累的能量分散到了多个速度通道。这两种算法都无法估计出目标准确的位置与速度。为了避免能量扩散,传统算法只能缩短积累时间,浪费了积累时间之外的目标能量。

    图  4  MTD处理结果
    Figure  4.  Result of MTD
    图  5  RFT处理结果
    Figure  5.  Result of RFT

    为了分析本文算法对任意机动目标的检测性能,将进行5000次蒙特卡洛实验。由–10 dB至4 dB变化SNR,每次实验中v0在[0, 50] m/s中随机选择,a1在[2, 400] m/s2中随机选择,a2在[0, 200] m/s2中随机选择,a3在[400, 600] m/s2中随机选择。此时,目标可能的最大运动速度为470 m/s,已经产生了多普勒模糊,传统方法必须通过解模糊手段来进行速度估计,而本文算法直接采用速度信息进行相位补偿,避免了多普勒模糊。若估计位置与真实位置误差在2个距离单元以内,估计速度通道与真实速度相符,则认为检测正确。将式(9)命名为DPCI,设置固定步长L=0.5Lmax。虚警概率10–6下,DPWACI, DPCI, RFT与解模糊后的MTD算法的检测性能曲线如图6所示。

    图  6  检测性能对比曲线
    Figure  6.  Curves of comparison of detection performances
    图  7  速度估计均方根误差
    Figure  7.  Root mean square error of estimated velocity

    图6所示,虚警概率10–6下,本文DPWACI算法在信噪比–6 dB时达到了90%。相较于传统的MTD与FRT算法,分别得到了约8 dB与6 dB的信噪比增益。相较于没有采用加权搜索和自适应步长的DPCI算法,DPWCI算法进一步将检测所需信噪比降低了约1 dB。如图7所示,在目标信噪比大于–7 dB时速度估计误差已经非常小了,当目标信噪比大于–6 dB后几乎不存在估计误差。

    本文提出了一种适用于任意机动目标的基于动态规划的加权自适应相参积累方法。结合加权动态规划搜索以及自适应补偿相参积累,该方法能够克服距离徙动,多普勒扩展以及多普勒模糊,在目标运动参数发生突变时依然能够沿着目标运动轨迹进行高效能量积累。仿真结果和性能对比展示了该算法相较于传统算法的优越性,误差分析证实了所提算法的估计精确性。

  • 图  1  水上桥梁

    Figure  1.  Water bridges

    图  2  基于SAR图像的水上桥梁检测流程图

    Figure  2.  The flow chart of water bridge detection based on SAR image

    图  3  陆上桥梁

    Figure  3.  Land bridges

    图  4  水上桥梁和陆上桥梁的SAR图像

    Figure  4.  The water bridges and land bridges in SAR image

    图  5  基于极化CSAR数据的陆上桥梁提取结构图

    Figure  5.  Block diagram of land bridge extraction based on polarization CSAR data

    图  6  不同地物的电磁散射特征意图

    Figure  6.  Schematic diagram of electromagnetic scattering characteristics of different objects

    图  7  采用文献[3]方法和本文方法的陆上桥梁与陆地背景分离结果对比

    Figure  7.  Comparison of the land background separation result between the method of Ref. [3] and this paper

    图  8  观测场景的光学图像和不同观测方向下获得的极化熵图像

    Figure  8.  The optical image of the observation scene and the polarization entropy image obtained under different observation directions

    图  9  基于极化CSAR数据的陆上桥梁提取处理流程图

    Figure  9.  The flow chart of land bridges extraction based on polarized CSAR data

    图  10  观测场景的光学图像与极化CSAR图像

    Figure  10.  Optical image and polarized CSAR images of the observation scenes

    图  11  地区1的光学图像、CPE结果和疑似桥梁目标

    Figure  11.  Area 1: Optical images, CPE result and possible bridge targets

    图  12  地区2的光学图像、CPE 结果和疑似桥梁目标

    Figure  12.  Area 2: Optical images, CPE result and possible bridge targets

    图  13  不同疑似桥梁目标(如图11(a)所示)的DH值

    Figure  13.  The DH values of different possible bridge targets (As shown in Fig. 11(a))

    图  14  地区1抑制虚假目标的处理结果

    Figure  14.  Processing result of removing false targets in area 1

    图  15  地区2抑制虚假目标的处理结果

    Figure  15.  Processing result of removing false targets in area 2

    图  16  地区1光学图像和桥梁提取结果

    Figure  16.  Optical image and the result of bridge extraction in area 1

    图  17  地区2光学图像和桥梁提取结果

    Figure  17.  Optical image and the result of bridge extraction in area 2

    表  1  疑似桥梁区域与陆地背景的分离阈值

    Table  1.   The separation threshold between possible bridge region and land background

    区域分离阈值
    地区10.6118
    地区20.6549
    下载: 导出CSV

    表  2  桥梁和陆地背景的CPE均值

    Table  2.   The CPE mean value of land bridge and its background

    目标CPE均值
    桥梁0.4018
    陆地背景0.7819
    下载: 导出CSV

    表  3  桥梁边缘所在直线参数

    Table  3.   Straight line parameters at the edge of the bridges

    区域桥梁边缘直线斜率 (°)桥梁边缘直线截距 (pixels)
    地区147.5–237
    47.5–387
    地区224.8–48
    24.8–155
    下载: 导出CSV
  • [1] HAN Yu, ZHENG Hong, CAO Qiong, et al. An effective method for bridge detection from satellite imagery[C]. The 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 2007: 2753–2757.
    [2] LUO J, MING D, LIU W, et al. Extraction of bridges over water from IKONOS panchromatic data[J]. International Journal of Remote Sensing, 2007, 28(16): 3633–3648. doi: 10.1080/01431160601024226
    [3] 赵冠雄, 沈汀. 高分辨率SAR图像桥梁自动提取算法[J]. 计算机工程与设计, 2014, 35(8): 2793–2797. doi: 10.3969/j.issn.1000-7024.2014.08.034

    ZHAO Guanxiong and SHEN Ting. Automatic bridge extraction algorithm from high-resolution SAR image[J]. Computer Engineering and Design, 2014, 35(8): 2793–2797. doi: 10.3969/j.issn.1000-7024.2014.08.034
    [4] ZHANG Xiongmei, SONG Jianshe, YI Zhaoxiang, et al. Extraction and recognition of bridges over water in high resolution SAR image[C]. 2011 MSEC International Conference on Multimedia, Software Engineering and Computing, Wuhan, China, 2011: 19–24.
    [5] 刘春, 杨健, 徐丰, 等. 基于水域跟踪的极化SAR图像桥梁检测[J]. 清华大学学报: 自然科学版, 2017, 57(12): 1303–1309. doi: 10.16511/j.cnki.qhdxxb.2017.25.057

    LIU Chun, YANG Jian, XU Feng, et al. Bridge detection in polarimetric SAR images based on water area tracing[J]. Journal of Tsinghua University:Science and Technology, 2017, 57(12): 1303–1309. doi: 10.16511/j.cnki.qhdxxb.2017.25.057
    [6] 张永梅, 孙静, 叶晨. 基于互补特征的桥梁识别方法[J]. 计算机应用与软件, 2014, 31(3): 151–155, 158. doi: 10.3969/j.issn.1000-386x.2014.03.040

    ZHANG Yongmei, SUN Jing, and YE Chen. A bridge recognition method based on complementary features[J]. Computer Applications and Software, 2014, 31(3): 151–155, 158. doi: 10.3969/j.issn.1000-386x.2014.03.040
    [7] 熊伟, 钟娟娟, 曹兰英. 一种高分辨率SAR图像水上桥梁目标识别新方法[J]. 火力与指挥控制, 2014, 39(4): 133–136, 140. doi: 10.3969/j.issn.1002-0640.2014.04.033

    XIONG Wei, ZHONG Juanjuan, and CAO Lanying. A novel algorithm for bridge recognition over water in high resolution SAR image[J]. Fire Control &Command Control, 2014, 39(4): 133–136, 140. doi: 10.3969/j.issn.1002-0640.2014.04.033
    [8] 安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221–242. doi: 10.12000/JR20026

    AN Daoxiang, CHEN Leping, FENG Dong, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221–242. doi: 10.12000/JR20026
    [9] 王建峰, 林赟, 郭胜龙, 等. 圆迹SAR的建筑物全方位优化成像方法研究[J]. 雷达学报, 2015, 4(6): 698–707. doi: 10.12000/JR15069

    WANG Jianfeng, LIN Yun, GUO Shenglong, et al. Circular SAR optimization imaging method of buildings[J]. Journal of Radars, 2015, 4(6): 698–707. doi: 10.12000/JR15069
    [10] 洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046

    HONG Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046
    [11] CHEN Leping, AN Daoxiang, and HUANG Xiaotao. Resolution analysis of circular synthetic aperture radar noncoherent imaging[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(1): 231–240. doi: 10.1109/TIM.2019.2890932
    [12] 丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063

    DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063
    [13] 杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–693. doi: 10.12000/JR19099

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–693. doi: 10.12000/JR19099
    [14] 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047

    WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
    [15] LUO Yuxiao, AN Daoxiang, WANG Wu, et al. Improved ROEWA SAR image edge detector based on curvilinear structures extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 631–635. doi: 10.1109/LGRS.2019.2926428
    [16] 李洋, 王官云, 王彦平, 等. 多角度极化SAR图像散射特征分解及SVM分类[J]. 电波科学学报, 2019, 34(6): 771–777. doi: 10.13443/j.cjors.2019043002

    LI Yang, WANG Guanyun, WANG Yanping, et al. Scattering feature decomposition and SVM classification of multi-angle polarimetric SAR images[J]. Chinese Journal of Radio Science, 2019, 34(6): 771–777. doi: 10.13443/j.cjors.2019043002
    [17] CHEN Leping, AN Daoxiang, HUANG Xiaotao, et al. A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5545–5554.
    [18] XUE Feiteng, LIN Yun, HONG Wen, et al. Analysis of azimuthal variations using multi-aperture polarimetric entropy with circular SAR images[J]. Remote Sensing, 2018, 10(1): 123. doi: 10.3390/rs10010123
    [19] XUE Feiteng, LIN Yun, HONG Wen, et al. An improved h/α unsupervised classification method for circular PolSAR images[J]. IEEE Access, 2018, 6: 34296–34306. doi: 10.1109/ACCESS.2018.2838329
    [20] CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
  • 期刊类型引用(6)

    1. 艾小锋,吴静,张静克,朱义奇,徐志明,吴其华. 空天目标雷达智能识别仿真系统设计与实现. 现代防御技术. 2024(02): 151-162 . 百度学术
    2. 刘康怡,赵振宇,李俐. SAR数据在土壤盐渍化监测中的应用研究进展. 地球信息科学学报. 2024(08): 1893-1910 . 百度学术
    3. 岳智彬,卢建斌,万露. 基于注意力机制的SRU模型雷达HRRP目标识别. 舰船电子工程. 2023(04): 44-48 . 百度学术
    4. 王再辰,程辉,赵亮. 基于极限学习机的在线参数更新方法及工业应用. 现代电子技术. 2023(22): 126-130 . 百度学术
    5. 郭鹏程,王晶晶,杨龙顺. 雷达地面目标识别技术现状与展望. 航空兵器. 2022(02): 1-12 . 百度学术
    6. 李秀娟,刘永信,黄平平,苏耘. 矢量网络分析仪极化特征参数测量校准方法研究. 电子测量与仪器学报. 2022(10): 26-32 . 百度学术

    其他类型引用(1)

  • 加载中
图(17) / 表(3)
计量
  • 文章访问数: 1632
  • HTML全文浏览量: 501
  • PDF下载量: 147
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-08-20
  • 修回日期:  2020-10-29
  • 网络出版日期:  2020-11-17
  • 刊出日期:  2021-06-28

目录

/

返回文章
返回