逆Gamma纹理背景下两类子空间目标的自适应检测方法

丁昊 王国庆 刘宁波 关键

丁昊, 王国庆, 刘宁波, 关键. 逆Gamma纹理背景下两类子空间目标的自适应检测方法[J]. 雷达学报, 2017, 6(3): 275-284. doi: 10.12000/JR16088
引用本文: 丁昊, 王国庆, 刘宁波, 关键. 逆Gamma纹理背景下两类子空间目标的自适应检测方法[J]. 雷达学报, 2017, 6(3): 275-284. doi: 10.12000/JR16088
Ding Hao, Wang Guoqing, Liu Ningbo, Guan Jian. Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background[J]. Journal of Radars, 2017, 6(3): 275-284. doi: 10.12000/JR16088
Citation: Ding Hao, Wang Guoqing, Liu Ningbo, Guan Jian. Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background[J]. Journal of Radars, 2017, 6(3): 275-284. doi: 10.12000/JR16088

逆Gamma纹理背景下两类子空间目标的自适应检测方法

DOI: 10.12000/JR16088
基金项目: 

国家自然科学基金 61531020

国家自然科学基金 61501487

山东省自然科学基金 2015ZRA06052

国家自然科学基金 61471381

国家自然科学基金 61471382

国家自然科学基金 61401495

航空科学基金 20150184003

详细信息
    作者简介:

    丁昊(1988-),男,博士研究生,主要研究方向为海杂波特性认知、雷达目标检测等。E-mail: hao3431@tom.com

    王国庆(1980-),男,博士,讲师,主要研究方向为高速信号采集、雷达信号处理等。E-mail: gqwang80@126.com

    刘宁波(1983-),男,博士,讲师,研究方向为雷达信号处理、海杂波中目标的非线性检测。E-mail: lnb198300@163.com

    关键(1968-),男,教授,博士生导师,获全国优秀博士学位论文奖,新世纪百千万人才工程国家级人选。主要研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合。E-mail: guanjian96@tsinghua.org.cn

    通讯作者:

    丁昊, E-mail: hao3431@tom.com

    关键, E-mail: guanjian96@tsinghua.org.cn

  • 中图分类号: TN957

Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background

Funds: 

Foundation Items: The National Natural Science Foundation of China 61531020

Foundation Items: The National Natural Science Foundation of China 61501487

The Natural Science Foundation of Shandong 2015ZRA06052

Foundation Items: The National Natural Science Foundation of China 61471381

Foundation Items: The National Natural Science Foundation of China 61471382

Foundation Items: The National Natural Science Foundation of China 61401495

The Aeronautical Science Foundation of China 20150184003

  • 摘要: 该文在复合高斯海杂波背景下,以逆Gamma分布作为纹理分量的先验分布模型,研究了1阶高斯(First Order Gaussian, FOG)和2阶高斯(Second Order Gaussian, SOG)两类子空间目标的自适应检测问题。采用两步广义似然比(Generalized Likelihood Ratio Test, GLRT)推导了检测统计量,并分别采用采样协方差矩阵(Sample Covariance Matrix, SCM)、归一化采样协方差矩阵(Normalized Sample Covariance Matrix, NSCM)和定点估计(Function Point Estimation, FPE)作为协方差矩阵估计值,与GLRT相结合,构造出新的自适应检测器。由于该文检测器在设计阶段考虑了海杂波的先验分布模型,且在检测阶段采用了与工作环境相匹配的模型参数,经性能分析与验证,其在检测性能上优于已有匹配滤波(Adaptive Matched Filter, AMF)和归一化匹配滤波(Adaptive Normalized Matched Filter, ANMF)检测器。

     

  • 图  1  检测性能对比

    Figure  1.  Comparison of detection performance

    图  2  协方差矩阵估计方法的影响

    Figure  2.  Influence of covariance matrix estimation method

    图  3  参考单元数的影响

    Figure  3.  Influence of reference cell numbers

    图  4  形状参数的影响

    Figure  4.  Influence of shape parameter

    图  5  空间相关性的影响

    Figure  5.  Influence of spatial correlation

    图  6  海杂波幅度分布建模结果

    Figure  6.  Amplitude distribution modeling results of sea clutter

    图  7  实测海杂波中的检测性能

    Figure  7.  Detection performance in measured sea clutter

    图  8  检测性能随目标多普勒频率的变化曲线

    Figure  8.  Variation of detection performance with the target's Doppler frequency

  • [1] 何友, 黄勇, 关键, 等.海杂波中的雷达目标检测技术综述[J].现代雷达, 2014, 36(12): 1-9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    He Y, Huang Y, Guan J, et al.. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1-9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [2] Ward K, Tough R, and Watts S. Sea Clutter: Scattering, the K-Distribution and Radar Performance, 2nd ed[M]. London: The Institution of Engineering and Technology, 2013.
    [3] Gini F and Farina A. Vector subspace detection in compound-Gaussian clutter, Part Ⅰ: Surgey and new results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1295-1311. doi: 10.1109/TAES.2002.1145751
    [4] Conte E, Lops M, and Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617-625. doi: 10.1109/7.381910
    [5] Gini F. Suboptimum coherent radar detection in a mixture of K-distributed and Gaussian clutter[J]. IEE Proceedings, Radar, Sonar and Navigation, 1997, 144(1): 39-48. doi: 10.1049/ip-rsn:19970967
    [6] Jin Y and Friedlander B. A CFAR adaptive subspace detector for second-order Gaussian signals[J]. IEEE Transactions on Signal Processing, 2005, 53(3): 871-884. doi: 10.1109/TSP.2004.842196
    [7] Bon N, Khenchaf A, and Garello R. GLRT subspace detection for range and Doppler distributed targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 678-696. doi: 10.1109/TAES.2008.4560214
    [8] Liu J, Zhang Z J, Yang Y, et al.. A CFAR adaptive subspace detector for first-order or second-order Gaussian signals based on a single observation[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5126-5140. doi: 10.1109/TSP.2011.2164073
    [9] Robey F C, Fuhrman D L, Kelly E J, et al.. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216. doi: 10.1109/7.135446
    [10] Kraut S, Scharf L L, and McWhorter L T. Adaptive subspace detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 1-16. doi: 10.1109/78.890324
    [11] Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541. doi: 10.1109/78.782198
    [12] Liu W J, Xie W C, Liu J, et al.. Adaptive double subspace signal detection in Gaussian background—Part Ⅰ: Homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2345-2357. doi: 10.1109/TSP.2014.2309556
    [13] Liu W J, Xie W C, Liu J, et al.. Adaptive double subspace signal detection in Gaussian background—Part Ⅱ: Partially homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2358-2369. doi: 10.1109/TSP.2014.2309553
    [14] 丁昊, 薛永华, 黄勇, 等.均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J].雷达学报, 2015, 4(4): 418-430. http://radars.ie.ac.cn/CN/abstract/abstract277.shtml

    Ding H, Xue Y H, Huang Y, et al.. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Jounal of Radars, 2015, 4(4): 418-430. http://radars.ie.ac.cn/CN/abstract/abstract277.shtml
    [15] JIAN T, HE Y, LIAO G S, et al.. Adaptive persymmetric detector of generalised likelihood ratio test in homogeneous environment[J]. IET Signal Processing, 2016, 10(2): 91-99. doi: 10.1049/iet-spr.2015.0200
    [16] Conte E, Lops M, and Ricci G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8): 248-250. doi: 10.1109/97.511809
    [17] Conte E and Maio A D. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Ocean Engineering, 2004, 29(2): 284-302. doi: 10.1109/JOE.2004.826901
    [18] Gao Y C, Liao G S, and Liu W J. High resolution radar detection in interference and non-homogeneous noise[J]. IEEE Signal Processing Letters, 2016. DOI: 10.1109/ LSP.2016.2597738.
    [19] 刘明, 水鹏朗.海杂波背景下的组合自适应GLRT-LTD[J].电子与信息学报, 2015, 37(12): 2834-2990. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201512028.htm

    Liu M and Shui P L. Combined adaptive GLRT-LTD against sea clutter[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2834-2990. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201512028.htm
    [20] GAO Y C, LIAO G S, ZHU S Q, et al.. A persymmetric GLRT for adaptive detection in compound-Gaussian clutter with random texture[J]. IEEE Signal Processing Letters, 2013, 20(6): 615-618. doi: 10.1109/LSP.2013.2259232
    [21] Kong L J, Li N, Cui G L, et al.. Adaptive Bayesian detection for multiple-input multiple-output radar in compound-Gaussian clutter with random texture[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 689-698. https://www.researchgate.net/publication/295257939_Adaptive_Bayesian_detection_for_multiple-input_multiple-output_radar_in_compound-Gaussian_clutter_with_random_texture
    [22] Balleri A, Nehorai A, and Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse Gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775-780. doi: 10.1109/TAES.2007.4285370
    [23] Bandiera F, Besson O, and Ricci G. Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5391-5396. doi: 10.1109/TSP.2010.2052922
    [24] Sangston K J, Gini F, and Greco M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64-77. doi: 10.1109/TAES.2012.6129621
    [25] Ding H, Guan J, Liu N B, et al.. New spatial correlation models for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1833-1837. doi: 10.1109/LGRS.2015.2430371
    [26] Gini F and Farina A. Matched subspace CFAR detection of hovering helicopters[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1293-1305. doi: 10.1109/7.805446
    [27] Pulsone N B and Raghavan R S. Analysis of an adaptive CFAR detector in non-Gaussian interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 903-916. doi: 10.1109/7.784060
    [28] Chan H C. Radar sea-clutter at low grazing angles[J]. IEE Proceedings-F, 1990, 137(2): 102-112. https://www.researchgate.net/publication/3361247_Radar_sea-clutter_at_low_grazing_angles
  • 加载中
图(8)
计量
  • 文章访问数:  2135
  • HTML全文浏览量:  600
  • PDF下载量:  793
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-18
  • 修回日期:  2016-10-24
  • 网络出版日期:  2017-06-28

目录

    /

    返回文章
    返回