基于线性Bregman迭代类的多量测向量ISAR成像算法研究

陈文峰 李少东 杨军 马晓岩

陈文峰, 李少东, 杨军, 马晓岩. 基于线性Bregman迭代类的多量测向量ISAR成像算法研究[J]. 雷达学报, 2016, 5(4): 389-401. doi: 10.12000/JR16057
引用本文: 陈文峰, 李少东, 杨军, 马晓岩. 基于线性Bregman迭代类的多量测向量ISAR成像算法研究[J]. 雷达学报, 2016, 5(4): 389-401. doi: 10.12000/JR16057
Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. Journal of Radars, 2016, 5(4): 389-401. doi: 10.12000/JR16057
Citation: Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. Journal of Radars, 2016, 5(4): 389-401. doi: 10.12000/JR16057

基于线性Bregman迭代类的多量测向量ISAR成像算法研究

DOI: 10.12000/JR16057
基金项目: 

国家部委基金

详细信息
    作者简介:

    陈文峰(1989–),男,新疆巩留人,2014年获空军预警学院硕士学位,现为空军预警学院博士研究生,主要研究方向为压缩感知、逆合成孔径雷达成像。E-mail:chenwf925@163.com;李少东(1987–),男,河北保定人,2012年获空军预警学院硕士学位,现为空军预警学院博士研究生,主要研究方向为压缩感知、逆合成孔径雷达成像。E-mail:liying198798@126.com;杨军(1973–),男,云南大理人,2003年获空军工程大学博士学位,现为空军预警学院副教授,主要研究方向为压缩感知、雷达成像、雷达系统。E-mail:yangjem@126.com;马晓岩(1961–),男,湖北赤壁人,2002年获清华大学博士学位,现为空军预警学院教授,主要研究方向为雷达成像、雷达系统、目标检测。E-mail:mxyldxy@sina.com

    通讯作者:

    陈文峰chenwf925@163.com

Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration

Funds: 

The National Ministries Foundation

  • 摘要: 为实现目标回波数据稀疏时的快速稳健ISAR成像,该文在构建多量测向量ISAR回波模型的基础上,利用压缩感知(Compressive Sensing, CS)中的线性Bregman迭代理论,研究了基于线性Bregman迭代类的多量测向量快速ISAR成像算法。该类成像算法共包括4种算法,首先给出此类算法的整体迭代构架、应用条件以及4种方法之间的联系;其次对此类算法的重构性能、收敛性、抗噪性以及正则化参数选择等方面进行全面的比较分析;最后基于实测数据进行ISAR成像,实验结果表明,与传统单量测向量ISAR成像算法相比,该文算法在低信噪比条件下可在更短的成像时间内获得更高的成像质量。

     

  • [1] 张龙, 张磊, 邢孟道. 一种基于改进压缩感知的低信噪比ISAR高分辨成像方法[J]. 电子与信息学报, 2011, 32(9): 2263-2267. Zhang Long, Zhang Lei, and Xing Meng-dao. Development and prospect of compressive sensing[J]. Journal of Electronics Information Technology, 2011, 32(9): 2263-2267.
    [2] Donho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    [3] Baraniuk R and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Boston, USA, 2007: 128-133.
    [4] Zhang S S, Xiao B, and Zong Z L. Improved compressed sensing for high-resolution ISAR image reconstruction[J]. SCIENCE CHINA Information Sciences, 2014, 59(23): 2918-2926.
    [5] Rao W, Li G, Wang X Q, et al.. Comparison of parametric sparse recovery methods for ISAR image formation[J]. SCIENCE CHINA Information Sciences, 2014, 57(2): 11-12.
    [6] Zhang X H, Bai T, Meng H Y, et al.. Compressive sensing-based ISAR imaging via the combination of the sparsity and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 990-994.
    [7] 吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨ISAR成像算法[J]. 电子与信息学报, 2014, 36(1): 187-193. Wu Min, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193.
    [8] Davies M E and Eldar Y C. Rank awareness in joint sparse recovery[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1135-1146.
    [9] Zhao L F, Wang L, Bi G A, et al.. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392-6403.
    [10] 陈一畅, 张群, 陈校平, 等. 多重测量矢量模型下的稀疏步进频率SAR成像算法[J]. 电子与信息学报, 2014, 36(12): 2987-2993. Chen Yi-chang, Zhang Qun, Chen Xiao-ping, et al.. Imaging algorithm of sparse stepped fequency SAR based on multiple measurement vectors model[J]. Journal of Electronics Information Technology, 2014, 36(12): 2987-2993.
    [11] 俞翔, 朱岱寅, 张劲东, 等. 基于设计结构化Gram矩阵的ISAR运动补偿方法[J]. 电子学报, 2014, 42(3): 442-461. Yu Xiang, Zhu Dai-yin, Zhang Jing-dong, et al.. A motion compensation algorithm based on the designing structured Gram matrices[J]. Acta Electronica Sinica, 2014, 42(3): 442-461. 李少东, 陈文峰, 杨军, 等. 任意稀疏结构的多量测向量快速稀疏重构算法研究[J]. 电子学报, 2015, 43(4): 708-715.
    [12] Li Shao-dong, Chen Wen-feng, Yang Jun, et al.. Study on the fast sparse recovery algorithm via multiple measurement vectors of arbitrary sparse structure[J]. Acta Electronica Sinica, 2015, 43(4): 708-715.
    [13] Yin W, Osher S, Goldfarb D, et al.. Bregman iterative algorithms for l1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168.
    [14] Osher S, Mao Y, Dong B, et al.. Fast linearized Bregman iteration for compressive sensing and sparse denoisng[J]. Communications in Mathematical Sciences, 2011, 8(1): 93-111.
    [15] Cai J F, Osher S, and Shen Z W. Linearized Bregman iterations for frame-based image deblurring[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 226-252.
    [16] Yin W. Analysis and generalizations of the linearized Bregman method[J]. SIAM Journal on Imaging Sciences, 2010, 3(4): 856-877.
    [17] 陈文峰, 李少东, 杨军. 任意稀疏结构的复稀疏信号快速重构算法及其逆合成孔径雷达成像[J]. 光电子激光, 2015, 26(4): 797-804. Chen Wen-feng, Li Shao-dong, and Yang Jun. Fast recovery algorithm for complex sparse signal with arbitrary sparse structure and its inverse synthetic aperture radar imaging[J]. Journal of Optoelectronics Laser, 2015, 26(4): 797-804.
    [18] 李少东, 陈文峰, 杨军, 等. 一种快速复数线性Bregman迭代算法及其在ISAR成像中的应用[J]. 中国科学: 信息科学, 2015, 45(9): 1179-1196. Li Shao-dong, Chen Wen-feng, Yang Jun, et al.. A fast complex linearized Bregman iteration algorithm and its application in ISAR imaging[J]. Scientia Sinica (Informationis), 2015, 45(9): 1179-1196.
    [19] Donoho D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[J]. Discrete Computational Geometry, 2006, 35(4): 617-652.
    [20] 田野, 毕辉, 张冰尘, 等. 相变图在稀疏微波成像变化检测降采样分析中的应用[J].电子与信息学报, 2015, 37(10): 2335-2341. Tian Ye, Bi Hui, Zhang Bing-chen, et al.. Application of phase diagram to sampling ratio analysis in sparse microwave imaging change detection[J]. Journal of Electronics Information Technology, 2015, 37(10): 2335-2341.
    [21] Tropp J A and Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
    [22] Daubechies I, Defrise M, and De M C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457.
    [23] Blumensath T and Davies M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274.
    [24] 张磊. 高分辨率SAR/ISAR成像及误差补偿技术研究[D]. [博士论文], 西安电子科技大学, 2012. Zhang Lei. Study on high resolution SAR/ISAR imaging and error correction[D]. [Ph.D. dissertation], Xidian University, 2012.
    [25] Mohimani G H, Zadeh M B, and Jutten C. A fast approach for over-complete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
    [26] 苏伍各, 王宏强, 邓彬, 等. 基于方差成分扩张压缩的稀疏贝叶斯ISAR成像方法[J].电子与信息学报, 2014, 36(7): 1525-1531. Su Wu-ge, Wang Hong-qian, Deng Bin, et al.. Sparse Bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531.
    [27] Tropp J A, Gilbert A C, and Strauss M J. Simultaneous sparse approximation via greedy pursuit[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Ann Arbor, USA, 2005: 721-724.
    [28] Liu Z, You P, Wei X Z, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J] IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
  • 加载中
计量
  • 文章访问数:  2533
  • HTML全文浏览量:  461
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-15
  • 修回日期:  2016-06-14
  • 网络出版日期:  2016-08-28

目录

    /

    返回文章
    返回