基于带通欠采样的脉冲超宽带信号重建算法性能研究

邹宁 徐争光 冉建华 李朝阳

邹宁, 徐争光, 冉建华, 李朝阳. 基于带通欠采样的脉冲超宽带信号重建算法性能研究[J]. 雷达学报, 2015, 4(2): 185-191. doi: 10.12000/JR14103
引用本文: 邹宁, 徐争光, 冉建华, 李朝阳. 基于带通欠采样的脉冲超宽带信号重建算法性能研究[J]. 雷达学报, 2015, 4(2): 185-191. doi: 10.12000/JR14103
Zou Ning, Xu Zheng-guang, Ran Jian-hua, Li Chao-yang. Performance of Reconstruction Algorithm Based on Sub-Nyquist Bandpass Sampling in the Pulse Position Modulation-Ultra Wide Band System[J]. Journal of Radars, 2015, 4(2): 185-191. doi: 10.12000/JR14103
Citation: Zou Ning, Xu Zheng-guang, Ran Jian-hua, Li Chao-yang. Performance of Reconstruction Algorithm Based on Sub-Nyquist Bandpass Sampling in the Pulse Position Modulation-Ultra Wide Band System[J]. Journal of Radars, 2015, 4(2): 185-191. doi: 10.12000/JR14103

基于带通欠采样的脉冲超宽带信号重建算法性能研究

DOI: 10.12000/JR14103
详细信息
    作者简介:

    邹宁(1985–),男,湖北武汉人,2013年在华中科技大学获得工学博士学位,现在武汉船舶通信研究所数据通信部工作(全职),职称为工程师;研究方向为通信信号处理。E-mail:dahuangcun@163.com。徐争光(1982–),男,讲师,研究方向为通信信号处理。冉建华(1971–),男,高级工程师,研究方向为通信系统建模。

    通讯作者:

    邹宁

Performance of Reconstruction Algorithm Based on Sub-Nyquist Bandpass Sampling in the Pulse Position Modulation-Ultra Wide Band System

  • 摘要: 从脉冲超宽带(PPM-UWB)信号解调的角度, 该文探讨了PPM-UWB带通欠采样信号处理的信号重建算法, 并将零化滤波算法和ESPRIT算法进行了仿真对比。ESPRIT算法与零化滤波算法相比需要的最小带宽要求较大, 但是在同等带宽条件下, ESPRIT算法具有更好的抗噪声性能。

     

  • [1] 杨峰, 胡剑浩, 李少谦. 欠采样技术的超宽带信号子空间重建 方法[J]. 电子科技大学学报, 2010, 39(6): 841844. Yang Feng, Hu Jian-hao, and Li Shao-qian. Subspace reconstruction method of UWB signals based on subsampling[ J]. Journal of University of Electronic Science and Technology of China, 2010, 39(6): 841844.
    [2] 周田华, 何宁, 敖发良. 水下光通信PPM数字接收机的DSP实 现[J]. 光学技术, 2006, 32(Suppl.): 607609. Zhou Tian-hua, He Ning, and Ao Fa-liang. The realization of PPM digital receiver with DSP in underwater optical communication[J]. Optical Technique, 2006, 32(Suppl.): 607609.
    [3] 吴建军, 梁庆林, 项海格. 稀疏多径信道下非相干UWBPPM 接收机的多区积分优化方法[J]. 电子与信息学报, 2007, 29(9): 21682172. Wu Jian-jun, Liang Qing-lin, and Xiang Hai-ge. Multiple sub-intervals integration period optimization for noncoherent UWB-PPM receiver in sparse multipath channels[J]. Journal of Electronics Information Technology, 2007, 29(9): 21682172.
    [4] 陈海燕, 刘威, 李莉. 基于双滤波器的全光超宽带脉冲调制研 究[J]. 光通信技术, 2014, 38(7): 1719. Chen Hai-yan, Liu Wei, and Li Li. Research of all-optical ultra wideband pulse modulation based on double filter[J]. Optical Communication Technology, 2014, 38(7): 1719. 裴志军, 孙守梅, 张平, 等. 基于有限更新率采样的UWB信号 处理技术[J]. 天津工程师范学院学报, 2009, 19(3): 1013. Pei Zhi-jun, Sun Shou-mei, Zhang Ping, et al.. UWB signal processing based on sampling with finite rate of innovation[J]. Journal of Tianjin University of Technology and Education, 2009, 19(3): 1013.
    [5] Vetterli M, Marziliano P, and Blu T. Sampling signals with finite rate of innovation[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 14171428.
    [6] Maravic I and Vetterli M. Sampling and reconstruction of signals with finite rate of innovation in the presence of noise[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 27882805.
    [7] Marziliano P, Vetterli M, and Blu T. Sampling and exact reconstruction of bandlimited signals with additive shot noise[J]. IEEE Transactions on Information Theory, 2006, 52(5): 22302233.
    [8] Blu T, Dragotti P L, Vetterli M, et al.. Sparse sampling of signal innovation[J]. IEEE Signal Processing Magazine, 2008, 25(2): 3140.
    [9] 杨峰, 胡剑浩, 李少谦. 基于欠奈奎斯特采样的超宽带信号总 体最小二乘重建算法[J]. 电子与信息学报, 2010, 32(6): 14181422. Yang Feng, Hu Jian-hao, and Li Shao-qian. A total least squares reconstruction algorithm of UWB signals based on
    [10] sub-Nyquist sampling[J]. Journal of Electronics Information Technology, 2010, 32(6): 14181422. 杨峰. 脉冲超宽带的欠采样方法研究[D]. [博士论文], 成都电 子科技大学, 2010. Yang Feng. Research on sub-Nyquist sampling methods for impluse-UWB communications[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2010.
    [11] 康晓非. 超宽带系统中接收技术研究[D]. [博士论文], 西安电 子科技大学, 2012. Kang Xiao-fei. Study on reception techniques for ultra wideband systems[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2012.
    [12] Ottersten B, Viberg M, and Kailath T. Performance analysis of the total least squares ESPRIT algorithm[J]. IEEE Transactions on Signal Processing, 1991, 39(5): 11221135.
    [13] Manolakis D G, Ingle V K, and Kogon S M. 统计与自适应 信号处理[M]. 北京: 电子工业出版社, 2003: 465470. Manolakis D G, Ingle V K, and Kogon S M. Statistical and Adaptive Signal Processing[M]. Beijing: Publishing House of Electronics Industry, 2003: 465470.
    [14] Golub G H and Van Loan C F. 矩阵计算(第3版)[M]. 北京: 人民邮电出版社, 2011: 532533. Golub G H and Van Loan C F. Matrix Computations (3rd Edition)[M]. Beijing: Posts and Telecom Press, 2011: 532533.
  • 加载中
计量
  • 文章访问数:  2542
  • HTML全文浏览量:  463
  • PDF下载量:  1531
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-14
  • 修回日期:  2015-03-17
  • 网络出版日期:  2015-04-28

目录

    /

    返回文章
    返回