[1] |
Prats-Iraola P, Scheiber R, Rodriguez-Cassola M, et al.. High precision SAR focusing of TerraSAR-X experimental staring spotlight data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012: 3576-3579.
|
[2] |
Mittermayer J, Wollstadt S, Prats-Iraola P, et al.. Staring spotlight imaging with TerraSAR-X[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012: 1606-1609.
|
[3] |
Mittermayer J, Wollstadt S, Prats-Iraola P, et al.. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3695-3706.
|
[4] |
Kim J-h, Heer C, and Schaefer C. Astrium technology development for next generation SAR[C]. 2013 IEEE International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013: 24-26.
|
[5] |
Gantert S, Kern A, Dring R, et al.. The future of X-band SAR: TerraSAR-X next generation and WorldSAR constellation[C]. 2013 IEEE International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013: 20-23.
|
[6] |
Gantert S, Kern A, Dring R, et al.. TERRASAR-X next generationprogram overview[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec, Canada, 2014: 1-4.
|
[7] |
林世斌, 李悦丽, 严少石, 等. 平地假设对合成孔径雷达时域 算法成像质量的影响研究[J]. 雷达学报, 2012, 1(3): 309-313. Lin Shi-bin, Li Yue-li, Yan Shao-shi, et al.. Study of effects of flat surface assumption to synthetic aperture radar timedomain algorithms imaging quality[J]. Journal of Radars, 2012, 1(3): 309-313.
|
[8] |
Gumming G and Wong H. Synthetic Aperture Radar Imaging Algorithm and Implementation[M]. Beijing: Electronic Industries Press, 2007: 155-191.
|
[9] |
Lanari R and Hensley S. Chirp z-transform based SPECAN approach for phase-preserving ScanSAR image generation[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(5): 254-261.
|
[10] |
Raney R K, Runge H, Bamler R, et al.. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786-799.
|
[11] |
Bamler R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706-713.
|
[12] |
Prats-Iraola P, Scheiber R, Rodriguez-Cassola M, et al.. On the processing of very high resolution spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6003-6016.
|
[13] |
Yang W, Chen J, Zeng H C, et al.. A novel three-step image formation scheme for unified focusing on spaceborne SAR data[J]. Progress In Electromagnetics Research, 2013, 137: 621-642.
|
[14] |
Jiang Yan-nan, et al.. FDTD application of targets electromagnetic scattering in layered space[J]. Telkomnika Indonesian Journal of Electrical Engineering, 2013, 11(12): 7682-7688.
|
[15] |
Li X, Song J, and Sun Y. Information and Communication Technology for Education (2 Volume Set): Multi-band SAR image fusion study based on NSCT and PCNN[M]. Hong Kong Education Society, Hong Kong, 2014, DOI: 10.2495/ICTE130571.
|
[16] |
Yang Zhi-xiang. Application of fusion of multi-polarization SAR images in investigation of coastal tidal flats[J]. Yangtze River, 2013, 44(5): 52-60.
|
[17] |
Benediktsson J A, Swain P H, and Ersoy O K. Neural network approaches versus statistical methods in classification of multisource remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 540-551.
|