深度学习SAR三维成像研究综述

刘常浩 王岩 赵思雨 高安琪

刘常浩, 王岩, 赵思雨, 等. 深度学习SAR三维成像研究综述[J]. 雷达学报(中英文), 2026, 15(1): 1–25. doi: 10.12000/JR25163
引用本文: 刘常浩, 王岩, 赵思雨, 等. 深度学习SAR三维成像研究综述[J]. 雷达学报(中英文), 2026, 15(1): 1–25. doi: 10.12000/JR25163
LIU Changhao, WANG Yan, ZHAO Siyu, et al. Review of deep learning for SAR 3D imaging[J]. Journal of Radars, 2026, 15(1): 1–25. doi: 10.12000/JR25163
Citation: LIU Changhao, WANG Yan, ZHAO Siyu, et al. Review of deep learning for SAR 3D imaging[J]. Journal of Radars, 2026, 15(1): 1–25. doi: 10.12000/JR25163

深度学习SAR三维成像研究综述

DOI: 10.12000/JR25163 CSTR: 32380.14.JR25163
基金项目: 国家自然科学基金 (62271053, 62331007, 62422101)
详细信息
    作者简介:

    刘常浩,博士生,主要研究方向为雷达信号处理、深度学习雷达三维成像

    王 岩,博士,教授,博士生导师,主要研究方向为新体制雷达探测、成像与智能处理技术

    赵思雨,硕士生,主要研究方向为SAR三维成像

    高安琪,博士,助理研究员,主要研究方向为SAR成像、雷达系统仿真与总体设计

    通讯作者:

    王岩 yan_wang@bit.edu.cn

    责任主编:焦泽坤 Corresponding Editor: JIAO Zekun

  • 中图分类号: TN95

Review of Deep Learning for SAR 3D Imaging

Funds: The National Natural Science Foundation of China (62271053, 62331007, 62422101)
More Information
  • 摘要: 随着现代合成孔径雷达(SAR)三维成像系统对成像精度、效率及稳健性要求的不断提高,传统匹配滤波与压缩感知等方法三维成像性能受限。近年来,深度学习技术的迅猛发展为SAR三维成像提供了新的解决路径,通过将神经网络与雷达成像物理模型深度融合,形成了数据驱动与模型驱动协同的学习成像新范式。该文系统综述了深度学习在SAR三维成像中的研究进展,重点围绕超分辨成像与增强成像两大核心问题,基于前馈神经网络和深度展开网络的超分辨三维成像方法、多通道数据预处理和点云后处理三维增强成像方法论述了目前SAR三维成像方向的研究进展和研究热点,并综述了目前行业已公开发布的SAR三维成像数据集。此外,该文还探讨了当前深度学习SAR三维成像在高泛化高精度深度学习SAR超分辨三维成像技术研究、深度学习SAR高度维解模糊技术研究、深度学习SAR三维成像与图像增强一体化研究、深度学习SAR三维成像数据集构建等方面存在的研究挑战,并对未来发展趋势提出展望,旨在为相关领域学者提供研究参考和技术引导。

     

  • 图  1  SAR三维成像几何示意图

    Figure  1.  Tomographic SAR 3D imaging geometry schematic diagram

    图  2  ISTA与LISTA算法架构对比

    Figure  2.  Comparison of ISTA and LISTA algorithm architectures

    图  3  文献[27]中上海交通大学提出的基于CS-DNN架构的深度学习超分辨SAR三维成像方法原理图

    Figure  3.  A schematic diagram of the deep learning-based super-resolution SAR 3D imaging method utilizing the CS-DNN architecture, as proposed by Shanghai Jiao Tong University in Ref.[27].

    图  4  文献[27]中上海交通大学基于中国科学院IECAS-Data数据进行的SAR三维成像算法验证结果

    Figure  4.  SAR 3D imaging algorithm verification results conducted by Shanghai Jiao Tong University using the IECAS-Data from the Chinese Academy of Sciences, as presented in Ref.[27].

    图  5  文献[43]中北京理工大学提出的多航过无人机大合成孔径角SAR三维成像方法原理图

    Figure  5.  A schematic diagram of the multi-pass UAV large synthetic aperture angle SAR 3D imaging method proposed by Beijing Institute of Technology in Ref.[43]

    图  6  文献[43]中利用多航过无人机大合成孔径角SAR三维成像试验进行的算法对比结果

    Figure  6.  A comparative analysis of algorithm performance based on multi-pass UAV SAR 3D imaging experiments with large synthetic apertures, as presented in Ref.[43]

    图  7  文献[52]中德宇航采用γ−Net获取的TanDEM-X数据的SAR三维成像结果

    Figure  7.  SAR 3D imaging results of TanDEM-X data acquired using the γ−Net by the German Aerospace Center (DLR) in Ref.[52]

    图  8  文献[58]中北京理工大学采用GITomo-Net获取的北京TerraSAR-X三维成像结果

    Figure  8.  SAR 3D imaging results of Beijing TerraSAR-X data acquired using the GITomo-Net by Beijing Institute of Technology in Ref.[58]

    图  9  文献[62]中电子科技大学采用提出的RMIST-Net获得的近场毫米波SAR三维成像结果

    Figure  9.  The 3D imaging results of near-field millimeter-wave SAR obtained by the University of Electronic Science and Technology of China using the proposed RMIST-Net in Ref.[62]

    图  10  文献[73]中国科学院针对多通道SAR数据去噪问题提出的基于深度学习网络的滤波处理架构

    Figure  10.  The deep learning-based filtering architecture proposed by the Chinese Academy of Sciences in Ref.[73] for multi-channel SAR data denoising

    图  11  文献[75]中国科学院采用不同滤波方法进行多通道数据滤波预处理后的SAR三维成像结果对比

    Figure  11.  Comparison of SAR 3D imaging results after preprocessing multi-channel data with different filtering methods, as presented by the Chinese Academy of Sciences in [75]

    图  12  文献[32]中电子科技大学利用中国科学院SARMV3D-Imaging-1.0数据集通过不同成像方法和点云滤波方法获取的的SAR三维点云图像

    Figure  12.  SAR 3D point cloud images obtained by the University of Electronic Science and Technology of China using different imaging and point cloud filtering methods on the SARMV3D-Imaging-1.0 dataset, as presented in Ref.[32]

    表  1  中北京理工大学多航过无人机大合成孔径角SAR三维成像试验的性能指标对比

    Table  1.   Performance metrics comparison for the multi-pass UAV large synthetic aperture angle SAR 3D Imaging experiment by Beijing Institute of technology in Fig. 6

    指标BPCS-LSAEASTER
    SSIM0.840.830.92
    CD(m)1.120.880.80
    时间(s)2.696998.7511.02
    下载: 导出CSV

    表  2  图8中北京TerraSAR-X三维成像结果的精度对比

    Table  2.   Accuracy comparison of the Beijing TerraSAR-X 3D imaging results in Fig. 8

    方法 AG/IE 时间(s)
    区域 A 区域 B
    SL1MMER 6.43/2.85 3.39/1.72 13928.25
    MAda-Net (无先验构型) × × 236.43
    MAda-Net (有先验构型) 7.48/2.76 4.06/1.69
    GITomo-Net 7.11/2.85 3.90/1.73 269.88
    下载: 导出CSV

    表  3  深度学习远场SAR超分辨三维成像方法泛化性对比

    Table  3.   Comparative analysis of generalization in SAR far-field 3D imaging using deep unfolding networks

    网络结构 成像模型 方法 特点 泛化性
    前馈神经网络 单标签分类模型 TSNN[42] 高度维单假设体散射
    多标签分类模型 CS-DNN架构[27] 利用CS空间滤波后进行多标签分类
    MLC-Net[45] 网络训练需要观测先验
    逐网格点二分类模型 EASTER[43] 针对大合成孔径角,训练无需观测先验
    深度展开结构
    固定构型的稀疏成像模型 AMP-Net[36] 基于AMP深度展开
    CV-ISTA[35], γ−Net[52], ATASI-Net[54],
    AETomo-Net[53], Ada-CLISTAT[55]
    基于ISTA深度展开
    Gated RNN[56] 循环神经网络架构,考虑历史信息
    ADMM-Net[37,38] 基于ADMM深度展开
    考虑空变构型的稀疏成像模型 MAda-Net[57] 将观测特征与网络参数结合
    GITomo-Net[58] 网络训练不依赖构型先验
    下载: 导出CSV

    表  4  图9中电子科技大学的近场毫米波SAR三维成像试验成像性能比较

    Table  4.   Imaging performance comparison of the near-field millimeter-wave SAR 3D imaging experiment conducted by the University of Electronic Science and Technology of China in Fig. 9.

    目标MFRMAISTARMIST-Net
    ENT对比度时间(s)ENT对比度时间(s)ENT对比度时间(s)ENT对比度时间(s)
    手枪模型0.278.270.060.679.080.110.1012.062.330.0714.190.07
    书架模型0.663.700.061.193.720.110.503.852.340.354.030.06
    下载: 导出CSV

    表  5  中国科学院对图11中的不同滤波方法获取的三维SAR成像结果的性能指标对比

    Table  5.   The Chinese Academy of Sciences presents a performance comparison of the 3D SAR imaging results obtained using different filtering methods in Fig. 11

    指标 未滤波 非局部滤波 MS-IPDM
    MAEb1 1.4485 1.1293 1.1133
    MAEb2 1.5230 1.3801 1.4453
    MAEb3 2.9150 1.3675 1.2105
    STDb1 1.9082 1.4727 1.1689
    STDb2 2.0038 1.7815 1.5850
    STDb3 1.5016 1.9897 1.3184
    下载: 导出CSV

    表  6  文献[32]中电子科技大学对多种不同方法的SAR三维成像性能的对比

    Table  6.   Reference [32] from the University of Electronic Science and Technology of China presents a comparison of the SAR 3D imaging performance of multiple different method

    性能FISTASL1MMERtomo−IRENet−Rawtomo−LRENet−biUtomo−LRENet−LSTM
    分辨能力↑↑↑↑↑↑↑↑
    离群值抑制↑↑↑↑↑
    重建精度↑↑↑↑↑↑↑
    重建效率↑↑↑↑↑↑↑↑↑↑↑
    注:符号 ↑ 表示同一方面内各方法间的相对比较,箭头数量仅表示相对优劣程度,比较仅在同一行内进行。
    下载: 导出CSV

    表  7  SAR三维成像数据集获取途径

    Table  7.   SAR 3D imaging dataset acquisition methods

    数据集 单位 获取途径
    GOTCHA 美国空军实验室 https://www.sdms.afrl.af.mil/index.php? collection=gotcha (SDMS)
    FMCW SAR 美国密歇根大学 https://github.com/AdityaMuppala/ FMCW-SAR-3D-FFT(Github)
    SARMV3D-Imaging-1.0 空天院 https://radars.ac.cn/web/data/getData?newsColumnId=aac4fc85-5950-432a-8ca2-bf14608d4461(雷达学报)
    SARMV3D-Imaging-2.0 空天院 https://radars.ac.cn/web/data/getData?newsColumnId=f9286c6f-a287-4e5f-be76-105b07677c3c(雷达学报)
    SARMV3D-Imaging-3.0 空天院 https://radars.ac.cn/web/data/getData?newsColumnId=1cbc9f2d-f2ee-4748-9972-748c007f697f(雷达学报)
    高分辨三维毫米波雷达
    数据集1.0
    电子科技大学 https://radars.ac.cn/web/data/getData?dataType=3DRIED(雷达学报)
    涪城一号SAR三维成像
    数据集1.0
    南京航空航天大学 https://radars.ac.cn/web/data/getData?dataType=SpaceborneSAR3Dimaging(雷达学报)
    DistUAV-Tomo3D-1.0 北京理工大学 https://signal.ejournal.org.cn/datasetcn?columnId=7cd9c1df-d080-4fa6-8a2d-4cd8b4010a1a(信号处理)
    3DSARBuSim1.0 中山大学 https://www.scidb.cn/en/detail?dataSetId=89df9949f42d4e69958ccadf7b67f05c(电子与信息学报)
    下载: 导出CSV
  • [1] FORNARO G, SERAFINO F, and SOLDOVIERI F. Three-dimensional focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 507–517. doi: 10.1109/TGRS.2003.809934.
    [2] NANNINI M, SCHEIBER R, HORN R, et al. First 3-D reconstructions of targets hidden beneath foliage by means of polarimetric SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 60–64. doi: 10.1109/LGRS.2011.2160329.
    [3] ANTONELLO G, CASAGLI N, FARINA P, et al. Ground-based SAR interferometry for monitoring mass movements[J]. Landslides, 2004, 1(1): 21–28. doi: 10.1007/s10346-003-0009-6.
    [4] LIU Peiyao, ZHU Kaiwen, WANG Zhen, et al. Ground-based radar three-dimensional imaging for moon under sparse observations[C]. IET International Radar Conference (IRC 2023), Chongqing, China, 2023: 4183–4188. doi: 10.1049/icp.2024.1786.
    [5] 李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166–2172. doi: 10.3724/SP.J.1146.2013.01645.

    LI Liechen, LI Daojing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics & Information Technology, 2014, 36(9): 2166–2172. doi: 10.3724/SP.J.1146.2013.01645.
    [6] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873.
    [7] WANG Yan, DING Zegang, LI Linghao, et al. First demonstration of single-pass distributed SAR tomographic imaging with a P-band UAV SAR prototype[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5238618. doi: 10.1109/TGRS.2022.3221859.
    [8] BUDILLON A, EVANGELISTA A, and SCHIRINZI G. SAR tomography from sparse samples[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: IV-865–IV-868. doi: 10.1109/IGARSS.2009.5417514.
    [9] ZHU Xiaoxiang and BAMLER R. Very high resolution SAR tomography via compressive sensing[C]. 6th International Workshop on Advanced Optical Metrology on Fringe 2009, Frascati, Italy, 2009.
    [10] 赵克祥, 毕辉, 张冰尘. 基于快速阈值迭代的SAR层析成像处理方法[J]. 系统工程与电子技术, 2017, 39(5): 1019–1023. doi: 10.3969/j.issn.1001-506X.2017.05.11.

    ZHAO Kexiang, BI Hui, and ZHANG Bingchen. SAR tomography method based on fast iterative shrinkage-thresholding[J]. Systems Engineering and Electronics, 2017, 39(5): 1019–1023. doi: 10.3969/j.issn.1001-506X.2017.05.11.
    [11] WANG Xiao, XU Feng, and JIN Yaqiu. The iterative reweighted alternating direction method of multipliers for separating structural layovers in SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1883–1887. doi: 10.1109/LGRS.2017.2694825.
    [12] WANG Xiao and XU Feng. Tomographic SAR inversion by atomic-norm minimization-the gridless compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239113. doi: 10.1109/TGRS.2022.3223524.
    [13] LIU Minkun, WAND Yan, DING Zegang, et al. Atomic norm minimization based fast off-grid tomographic SAR imaging with nonuniform sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5203517. doi: 10.1109/TGRS.2024.3358863.
    [14] ZHANG Siqian, ZHU Yutao, DONG Ganggang, et al. Truncated SVD-based compressive sensing for downward-looking three-dimensional SAR imaging with uniform/nonuniform linear array[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1853–1857. doi: 10.1109/LGRS.2015.2431254.
    [15] ZHU Xiaoxiang and BAMLER R. Demonstration of super-resolution for tomographic SAR imaging in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3150–3157. doi: 10.1109/TGRS.2011.2177843.
    [16] ZHU Xiaoxiang and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. doi: 10.1109/TGRS.2011.2160183.
    [17] HUANG Yue, FERRO-FAMIL L, and REIGBER A. Under-foliage object imaging using SAR tomography and polarimetric spectral estimators[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2213–2225. doi: 10.1109/TGRS.2011.2171494.
    [18] SHI Yilei, ZHU Xiaoxiang, and BAMLER R. Nonlocal compressive sensing-based SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3015–3024. doi: 10.1109/TGRS.2018.2879382.
    [19] RAMBOUR C, DENIS L, TUPIN F, et al. Introducing spatial regularization in SAR tomography reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8600–8617. doi: 10.1109/TGRS.2019.2921756.
    [20] LIN Bo, LI Chao, JI Yicai, et al. A millimeter-wave 3D imaging algorithm for MIMO synthetic aperture radar[J]. Sensors, 2023, 23(13): 5979. doi: 10.3390/s23135979.
    [21] WANG Mou, WEI Shunjun, SHI Jun, et al. 3-D SAR imaging via perceptual learning framework with adaptive sparse prior[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202716. doi: 10.1109/TGRS.2023.3237660.
    [22] HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. Efficient 3D image reconstruction of airborne TomoSAR based on back projection and improved adaptive ISTA[J]. IEEE Access, 2021, 9: 47399–47410. doi: 10.1109/ACCESS.2021.3066984.
    [23] KHALIL ALSMADI M, OMAR K B, NOAH S A, et al. Performance comparison of multi-layer perceptron (back propagation, delta rule and perceptron) algorithms in neural networks[C]. 2009 IEEE International Advance Computing Conference, Patiala, India, 2009: 296–299. doi: 10.1109/IADCC.2009.4809024.
    [24] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229–1251. doi: 10.11897/SP.J.1016.2017.01229.

    ZHOU Feiyan, JIN Linpeng, and DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229–1251. doi: 10.11897/SP.J.1016.2017.01229.
    [25] 刘建伟, 宋志妍. 循环神经网络研究综述[J]. 控制与决策, 2022, 37(11): 2753–2768. doi: 10.13195/j.kzyjc.2021.1241.

    LIU Jianwei and SONG Zhiyan. Overview of recurrent neural networks[J]. Control and Decision, 2022, 37(11): 2753–2768. doi: 10.13195/j.kzyjc.2021.1241.
    [26] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321–332. doi: 10.16383/j.aas.2017.y000003.

    WANG Kunfeng, GOU Chao, DUAN Yanjie, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321–332. doi: 10.16383/j.aas.2017.y000003.
    [27] WU Chunxiao, ZHANG Zenghui, CHEN Longyong, et al. Super-resolution for MIMO array SAR 3-D imaging based on compressive sensing and deep neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3109–3124. doi: 10.1109/JSTARS.2020.3000760.
    [28] SHEN Rong, WEI Shunjun, ZHOU Zichen, et al. Image enhancement of 3-D SAR via U-net framework[C]. IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 947–950. doi: 10.1109/IGARSS46834.2022.9884760.
    [29] SERAFÍN-GARCÍA S A, NANNINI M, HÄNSCH R, et al. Deep-learning-based view interpolation toward improved TomoSAR focusing[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4014205. doi: 10.1109/LGRS.2024.3424195.
    [30] KUMAR S V, SUN Xinyao, WANG Zheng, et al. A U-net approach for InSAR phase unwrapping and denoising[J]. Remote Sensing, 2023, 15(21): 5081. doi: 10.3390/rs15215081.
    [31] ZENG Tianjiao, ZHAN Xu, REN Yu, et al. Exploring spatial feature regularization in deep-learning-based TomoSAR reconstruction: A preliminary study and performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5201227. doi: 10.1109/TGRS.2024.3521278.
    [32] LIU Liang, REN Yu, ZHANG Xiaoling, et al. Towards realistic TomoSAR reconstruction through light reconstruction and enhancement[C]. 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 2024: 1–5. doi: 10.1109/ICSIDP62679.2024.10869124.
    [33] WANG Shihong, GUO Jiayi, ZHANG Yueting, et al. TomoSAR 3D reconstruction for buildings using very few tracks of observation: A conditional generative adversarial network approach[J]. Remote Sensing, 2021, 13(24): 5055. doi: 10.3390/rs13245055.
    [34] WANG Mou, HU Yifei, WEI Shunjun, et al. Unsupervised 3D SAR imaging network based on generative adversary learning[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(7): 4621–4636. doi: 10.1109/TAP.2025.3547742.
    [35] QIAN Kun, WANG Yuanyuan, SHI Yilei, et al. Super-resolving SAR tomography using deep learning[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 4810–4813. doi: 10.1109/IGARSS47720.2021.9554165.
    [36] GAO Jingkun, YE Yu, LI Shizhong, et al. Fast super-resolution 3D SAR imaging using an unfolded deep network[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5. doi: 10.1109/ICSIDP47821.2019.9173392.
    [37] SHEN Rong, WEI Shunjun, WEN Yanbo, et al. A 3-D imaging method of building with TomoSAR based on DUADMM-net[C]. IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 7933–7936. doi: 10.1109/IGARSS52108.2023.10282080.
    [38] LIU Changhao, WANG Yan, DING Zegang, et al. Analysis of deep learning 3-D imaging methods based on UAV SAR[C]. IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 2951–2954. doi: 10.1109/IGARSS46834.2022.9883292.
    [39] BEBIS G and GEORGIOPOULOS M. Feed-forward neural networks[J]. IEEE Potentials, 1994, 13(4): 27–31. doi: 10.1109/45.329294.
    [40] POPESCU M C, BALAS V E, PERESCU-POPESCU L, et al. Multilayer perceptron and neural networks[J]. WSEAS Transactions on Circuits and Systems, 2009, 8(7): 579–588. doi: 10.5555/1639537.1639542.
    [41] WU Jianxin. Introduction to convolutional neural networks[J]. National Key Lab for Novel Software Technology, Nanjing University, China, 2017, 5(23): 495.
    [42] BUDILLON A, JOHNSY A C, SCHIRINZI G, et al. SAR tomography based on deep learning[C]. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3625–3628. doi: 10.1109/IGARSS.2019.8900616.
    [43] LIU Changhao, WANG Yan, ZHANG Guangbin, et al. High resolution large elevation synthetic aperture tomographic SAR imaging with classifier-based imaging architecture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 20666–20677. doi: 10.1109/JSTARS.2025.3593845.
    [44] ZENG Tao, LIU Minkun, WANG Yan, et al. Tomographic SAR imaging with large elevation aperture: A P-band small UAV demonstration[J]. Science China Information Sciences, 2022, 65(3): 132303. doi: 10.1007/s11432-021-3391-2.
    [45] OUYANG Depeng, ZHANG Yueting, GUO Jiayi, et al. MLC-net: A sparse reconstruction network for TomoSAR imaging based on multi-label classification neural network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 220: 85–99. doi: 10.1016/j.isprsjprs.2024.11.018.
    [46] RANGAN S, SCHNITER P, and FLETCHER A K. Vector approximate message passing[J]. IEEE Transactions on Information Theory, 2019, 65(10): 6664–6684. doi: 10.1109/TIT.2019.2916359.
    [47] BREDIES K and LORENZ D A. Linear convergence of iterative soft-thresholding[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 813–837. doi: 10.1007/s00041-008-9041-1.
    [48] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016.
    [49] TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108.
    [50] WIPF D P and RAO B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153–2164. doi: 10.1109/TSP.2004.831016.
    [51] GREGOR K and LECUN Y. Learning fast approximations of sparse coding[C]. The 27th International Conference on International Conference on Machine Learning, Haifa, Israel: Omnipress, 2010: 399–406. doi: 10.5555/3104322.3104374.
    [52] QIAN Kun, WANG Yuanyuan, SHI Yilei, et al. γ-net: Superresolving SAR tomographic inversion via deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4706116. doi: 10.1109/TGRS.2022.3164193.
    [53] REN Yu, ZHANG Xiaoling, HU Yunqiao, et al. AETomo-Net: A novel deep learning network for tomographic SAR imaging based on multi-dimensional features[C]. IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 3464–3467. doi: 10.1109/IGARSS46834.2022.9884512.
    [54] WANG Muhan, ZHANG Zhe, QIU Xiaolan, et al. ATASI-Net: An efficient sparse reconstruction network for tomographic SAR imaging with adaptive threshold[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4701918. doi: 10.1109/TGRS.2023.3268132.
    [55] MA Qian, HU Zhongyuan, WANG Chuxin, et al. An adaptive complex LISTA network exploiting Toeplitz structure for TomoSAR 3D reconstruction[C]. 2025 25th International Conference on Digital Signal Processing (DSP), Pylos, Greece, 2025: 1–5. doi: 10.1109/DSP65409.2025.11075068.
    [56] QIAN Kun, WANG Yuanyuan, JUNG P, et al. Basis pursuit denoising via recurrent neural network applied to super-resolving SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4710015. doi: 10.1109/TGRS.2022.3221185.
    [57] WANG Yan, LIU Changhao, ZHU Rui, et al. MAda-Net: Model-adaptive deep learning imaging for SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202413. doi: 10.1109/TGRS.2023.3239405.
    [58] LIU Changhao, WANG Yan, ZHANG Guangbin, et al. GITomo-Net: Geometry-independent deep learning imaging method for SAR tomography[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 220: 608–620. doi: 10.1016/j.isprsjprs.2025.01.004.
    [59] WANG Mou, WEI Shunjun, SHI Jun, et al. CSR-Net: A novel complex-valued network for fast and precise 3-D microwave sparse reconstruction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4476–4492. doi: 10.1109/JSTARS.2020.3014696.
    [60] BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542.
    [61] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. TPSSI-Net: Fast and enhanced two-path iterative network for 3D SAR sparse imaging[J]. IEEE Transactions on Image Processing, 2021, 30: 7317–7332. doi: 10.1109/TIP.2021.3104168.
    [62] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-Net: Joint range migration and sparse reconstruction network for 3-D mmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405.
    [63] YANIK M E, WANG Dan, and TORLAK M. Development and demonstration of MIMO-SAR mmWave imaging testbeds[J]. IEEE Access, 2020, 8: 126019–126038. doi: 10.1109/ACCESS.2020.3007877.
    [64] LOPEZ-SANCHEZ J M and FORTUNY-GUASCH J. 3-D radar imaging using range migration techniques[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(5): 728–737. doi: 10.1109/8.855491.
    [65] WANG Mou, WEI Shunjun, ZHOU Zichen, et al. CTV-Net: Complex-valued TV-driven network with nested topology for 3-D SAR imaging[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5588–5602. doi: 10.1109/TNNLS.2022.3208252.
    [66] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. Lightweight FISTA-inspired sparse reconstruction network for mmW 3-D holography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5211620. doi: 10.1109/TGRS.2021.3093307.
    [67] DEL CAMPO G M, NANNINI M, and REIGBER A. Statistical regularization for enhanced TomoSAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1567–1589. doi: 10.1109/JSTARS.2020.2970595.
    [68] FU Kun, ZHANG Yue, SUN Xian, et al. A coarse-to-fine method for building reconstruction from HR SAR layover map using restricted parametric geometrical models[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 2004–2008. doi: 10.1109/LGRS.2016.2621054.
    [69] TIAN Ye, DING Chibiao, SHI Minan, et al. Layover detection using neural network based on expert knowledge[J]. Remote Sensing, 2022, 14(23): 6087. doi: 10.3390/rs14236087.
    [70] 田野, 丁赤飚, 张福博, 等. 一种基于深度学习的SAR城市建筑区域叠掩精确检测方法[J]. 雷达学报, 2023, 12(2): 441–455. doi: 10.12000/JR23033.

    TIAN Ye, DING Chibiao, ZHANG Fubo, et al. SAR building area layover detection based on deep learning[J]. Journal of Radars, 2023, 12(2): 441–455. doi: 10.12000/JR23033.
    [71] DUAN Haoxuan, LIU Yuzhou, ZHANG Hong, et al. Large-area urban TomoSAR method with limited a priori knowledge and a complex deep learning model[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 139: 104521. doi: 10.1016/j.jag.2025.104521.
    [72] MUKHERJEE S, ZIMMER A, KOTTAYIL N K, et al. CNN-based InSAR denoising and coherence metric[C]. 2018 IEEE SENSORS, New Delhi, India, 2018: 1–4. doi: 10.1109/ICSENS.2018.8589920.
    [73] LI Jie, XU Zhongqiu, LI Zhiyuan, et al. A CNN-based multichannel interferometric phase denoising method applied to TomoSAR imaging[C]. IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 3448–3451. doi: 10.1109/IGARSS46834.2022.9884475.
    [74] SHI Yilei, WANG Yuanyuan, ZHU Xiaoxiang, et al. Non-local SAR tomography for large-scale urban mapping[C]. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 5197–5200. doi: 10.1109/IGARSS.2019.8897890.
    [75] LI Jie, XU Zhongqiu, LI Zhiyuan, et al. An unsupervised CNN-based multichannel interferometric phase denoising method applied to TomoSAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 3784–3796. doi: 10.1109/JSTARS.2023.3263964.
    [76] VITALE S, FERRAIOLI G, PASCAZIO V, et al. InSAR-MONet: Interferometric SAR phase denoising using a multiobjective neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239814. doi: 10.1109/TGRS.2022.3224303.
    [77] ZHANG Qi, JIANG Houjun, and WANG Teng. A semi-supervised self-boosting learning method for InSAR phase denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5513916. doi: 10.1109/TGRS.2025.3568932.
    [78] AGHABABAEI H, FERRAIOLI G, VITALE S, et al. A deep learning solution for phase screen estimation in SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 4007605. doi: 10.1109/LGRS.2025.3555441.
    [79] ZHANG Siqian, DONG Ganggang, and KUANG Gangyao. Matrix completion for downward-looking 3-D SAR imaging with a random sparse linear array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1994–2006. doi: 10.1109/TGRS.2017.2771826.
    [80] ZHOU Siyan, LI Yanlei, ZHANG Fubo, et al. Automatic regularization of TomoSAR point clouds for buildings using neural networks[J]. Sensors, 2019, 19(17): 3748. doi: 10.3390/s19173748.
    [81] ERTIN E, AUSTIN C D, SHARMA S, et al. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures[C]. Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, USA, 2007: 656802. doi: 10.1117/12.723245.
    [82] MUPPALA A V, NASHASHIBI A Y, AFSHARI E, et al. Fast-Fourier time-domain SAR reconstruction for millimeter-wave FMCW 3-D imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(12): 7028–7038. doi: 10.1109/TMTT.2024.3406938.
    [83] 仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112.

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112.
    [84] 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027.

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
    [85] 仇晓兰, 罗一通, 宋舒洁, 等. 微波视觉三维SAR实验系统及其全极化数据处理方法[J]. 雷达学报(中英文), 2024, 13(5): 941–954. doi: 10.12000/JR24137.

    QIU Xiaolan, LUO Yitong, SONG Shujie, et al. Microwave vision three-dimensional SAR experimental system and full-polarimetric data processing method[J]. Journal of Radars, 2024, 13(5): 941–954. doi: 10.12000/JR24137.
    [86] WEI Shunjun, ZHOU Zichen, WANG Mou, et al. 3DRIED: A high-resolution 3-D millimeter-wave radar dataset dedicated to imaging and evaluation[J]. Remote Sensing, 2021, 13(17): 3366. doi: 10.3390/rs13173366.
    [87] BI Hui, JIN Shuang, XU Weihao, et al. First three-dimensional imaging experiment of Chinese commercial SAR satellite Fucheng-1[J]. Science China Information Sciences, 2025, 68(7): 177301. doi: 10.1007/s11432-024-4418-8.
    [88] 王岩, 刘常浩, 王昊泽, 等. DistUAV-Tomo3D-1.0: 分布式无人机雷达多发多收单航过层析三维成像数据集[J]. 信号处理, 2025, 41(8): 1436–1442. doi: 10.12466/xhcl.2025.08.012.

    WANG Yan, LIU Changhao, WANG Haoze, et al. DistUAV-Tomo3D-1.0: Distributed UAV radar multiple transmit-receive single-pass tomographic SAR 3D imaging dataset[J]. Journal of Signal Processing, 2025, 41(8): 1436–1442. doi: 10.12466/xhcl.2025.08.012.
    [89] 焦润之, 邓嘉, 韩亚权, 等. 3DSARBuSim 1.0: 人造建筑高分辨星载SAR三维成像仿真数据集[J]. 电子与信息学报, 2024, 46(7): 2681–2693. doi: 10.11999/JEIT230882.

    JIAO Runzhi, DENG Jia, HAN Yaquan, et al. 3DSARBuSim 1.0: High-resolution space borne SAR 3D imaging simulation dataset of man-made buildings[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2681–2693. doi: 10.11999/JEIT230882.
    [90] WEI Lianhuan, FENG Qiuyue, LIU Shanjun, et al. Minimum redundancy array — a baseline optimization strategy for urban SAR tomography[J]. Remote Sensing, 2020, 12(18): 3100. doi: 10.3390/rs12183100.
    [91] LI Ying, WANG Yan, DING Zegang, et al. Dual-frequency SAR tomography with long sparse non-uniform baseline in ground-based lunar mapping[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 2915–2918. doi: 10.1109/IGARSS47720.2021.9553160.
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2026-01-08

目录

    /

    返回文章
    返回