基于几何与极化联合约束的建筑层析SAR三维成像方法

董书航 焦泽坤 周良将 仇晓兰

董书航, 焦泽坤, 周良将, 等. 基于几何与极化联合约束的建筑层析SAR三维成像方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25167
引用本文: 董书航, 焦泽坤, 周良将, 等. 基于几何与极化联合约束的建筑层析SAR三维成像方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25167
DONG Shuhang, JIAO Zekun, ZHOU Liangjiang, et al. Tomographic SAR 3D imaging method based on geometry and polarization joint constraints[J]. Journal of Radars, in press. doi: 10.12000/JR25167
Citation: DONG Shuhang, JIAO Zekun, ZHOU Liangjiang, et al. Tomographic SAR 3D imaging method based on geometry and polarization joint constraints[J]. Journal of Radars, in press. doi: 10.12000/JR25167

基于几何与极化联合约束的建筑层析SAR三维成像方法

DOI: 10.12000/JR25167 CSTR: 32380.14.JR25167
基金项目: 国家自然科学基金面上项目(62471456),国家重点研发计划(2022YFB3901604-3),中国科学院空天信息创新研究院科学与颠覆性技术项目(2024-AIRCAS-SDTP-01)
详细信息
    作者简介:

    董书航,博士,助理研究员,主要研究方向为SAR三维点云成像

    焦泽坤,博士,副研究员,主要研究方向为SAR微波视觉三维成像、多维度微波成像

    周良将,研究员,博士生导师,主要研究方向为合成孔径雷达系统设计与应用技术研究

    仇晓兰,研究员,博士生导师,主要研究方向为SAR成像处理、SAR图像解译、新体制SAR

    通讯作者:

    焦泽坤 jiaozk@aircas.ac.cn

    责任主编:张晓玲 Corresponding Editor: ZHANG Xiaoling

  • 中图分类号: TP751.1

Tomographic SAR 3D Imaging Method Based on Geometry and Polarization Joint Constraints

Funds: The National Natural Science Foundation of China (62471456), The National Key Research and Development Program of China (2022YFB3901604-3), Science and Disruptive Technology Program (2024-AIRCAS-SDTP-01)
More Information
  • 摘要: 层析合成孔径雷达(TomoSAR)是城市建筑物三维重建的重要技术。现有方法虽通过引入几何约束提升了成像质量,并在多极化条件下发展为极化层析SAR(PolTomoSAR),但仍面临复杂建筑结构下几何信息依赖性强、极化模型不完善等问题。为此,该文提出一种几何与极化联合约束的TomoSAR三维成像方法,融合建筑几何结构与Pauli极化相似度信息,结合极化相干最优处理及概率密度约束,显著提升点云成像质量。实验基于机载Ku波段4通道阵列苏州实测数据,结果表明所提方法在成像精度与完整性方面均优于现有方法,验证了其有效性与优越性。

     

  • 图  1  无人机载阵列层析SAR的几何结构模型

    Figure  1.  Geometric structure model of UAV-borne array tomographic SAR

    图  2  几何与极化联合约束的分布示意图

    Figure  2.  Distribution with joint constraints of geometry and polarization

    图  3  极化与几何联合约束层析SAR三维成像处理流程图

    Figure  3.  Flowchart of tomographic SAR 3D imaging processing with joint constraints of polarization and geometry

    图  4  苏州建筑区图像

    Figure  4.  Image of the building area in Suzhou

    图  5  苏州建筑初始点云成像结果

    Figure  5.  Initial point cloud imaging results in Suzhou

    图  6  苏州建筑点云提取与聚类图像

    Figure  6.  Image of point cloud extraction and clustering in Suzhou

    图  7  几何约束处理结果

    Figure  7.  Results of geometric constraint processing

    图  8  极化信息处理结果

    Figure  8.  Results of polarization information processing

    图  9  几何与极化联合约束的三维点云成像结果

    Figure  9.  Three-dimensional point cloud imaging results with joint constraints of geometry and polarization

    图  10  点云切片结果(m)

    Figure  10.  Results of point cloud slicing (m)

    图  11  多种点云成像方法处理结果(旋转配准后)

    Figure  11.  Results using various methods (after rotation registration)

    1  约束的压缩感知三维成像流程

    1.   Constrained CS 3D imaging process

     初始化:残差$ {r}_{0}={\boldsymbol{y}} $,y为观测向量,索引集$ S= \varnothing $,稀疏度
     $ K=n $,当前解$ {x}_{0}=0 $。
     步骤1:选择约束后与当前残差$ {r}_{k-1} $最相关的观测矩阵元素,
        $ {j}_{k}=\arg {\max }_{j}|{\boldsymbol{\phi}} _{j}^{{\mathrm{T}}}{r}_{k-1}f\left(\theta \right)| $
     步骤2:将选中的索引$ {j}_{k} $添加到索引集S中,$ {S}_{k}={S}_{k-1}\cup\left\{{j}_{k}\right\} $
     步骤3:最小二乘法求解系数向量:
         $ {{\boldsymbol{x}}}_{k}=\arg {\min }_{x}\|{\boldsymbol{y}}-{A}_{s}x{\|}_{2} $
         即$ {{\boldsymbol{x}}}_{k}={\left({\boldsymbol{A}}_{s}^{{\mathrm{T}}}{{\boldsymbol{A}}}_{s}\right)}^{-1}{\boldsymbol{A}}_{s}^{{\mathrm{T}}}{\boldsymbol{y}} $
     步骤4:更新残差:$ {r}_{k}={\boldsymbol{y}}-{{\boldsymbol{A}}}_{s}{{\boldsymbol{x}}}_{k} $
     终止条件:(1) 当残差小于预设阈值:$ \|{r}_{j}{\|}_{2} < \epsilon $
          (2) 达到设定的稀疏度:$ k=K $。
    下载: 导出CSV

    表  1  无人机载TomoSAR与飞行参数

    Table  1.   UAV TomoSAR and flight parameters

    参数 指标
    SAR类型 阵列
    频段 Ku波段
    飞行高度 400 m
    带宽 1200 MHz
    轨道/阵列数量 4
    中心下视角 45°
    平均基线间隔 17.8 cm
    极化通道 HH, HV, VH, VV
    下载: 导出CSV

    表  2  点云质量定量评价参数与结果

    Table  2.   Point cloud quality quantitative evaluation parameters and results

    成像方法 RMSE 点云完整度
    无约束三维点云 3.4827 1.2966
    几何与极化联合约束三维点云 2.1240 0.8800
    仅几何约束三维点云 2.9644 0.7155
    谱估计三维点云 3.6703 1.6566
    下载: 导出CSV
  • [1] BROWN W M. Synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1967, AES-3(2): 217–229. doi: 10.1109/TAES.1967.5408745.
    [2] WILEY C A. Synthetic aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3): 440–443. doi: 10.1109/TAES.1985.310578.
    [3] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013.
    [4] JIAO Zekun, QIU Xiaolan, DONG Shuhang, et al. Preliminary exploration of geometrical regularized SAR tomography[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 201: 174–192. doi: 10.1016/j.isprsjprs.2023.05.019.
    [5] 李晓婉, 梁兴东, 张福博, 等. 基于几何约束移动最小二乘的TomoSAR山区点云高精度三维重建方法[J]. 雷达学报, 2022, 11(3): 363–375. doi: 10.12000/JR22049.

    LI Xiaowan, LIANG Xingdong, ZHANG Fubo, et al. A geometry constrained moving least squares-based high-precision 3D reconstruction method of mountains from TomoSAR point clouds[J]. Journal of Radars, 2022, 11(3): 363–375. doi: 10.12000/JR22049.
    [6] HAN Dong, ZHOU Liangjiang, JIAO Zekun, et al. Efficient 3D image reconstruction of airborne TomoSAR based on back projection and improved adaptive ISTA[J]. IEEE Access, 2021, 9: 47399–47410. doi: 10.1109/ACCESS.2021.3066984.
    [7] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090.

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090.
    [8] 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027.

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
    [9] QIU Xiaolan, LUO Yitong, CHENG Yao, et al. SAR microwave vision 3D imaging dataset 3.0[EB/OL]. Journal of Radars. 2024. https://radars.ac.cn/web/data/getData?newsColumnId=2f2748db-10ef-4ad0-bcc4-f087ce59b6f8&pageType=en.
    [10] 仇晓兰, 罗一通, 宋舒洁, 等. 微波视觉三维SAR实验系统及其全极化数据处理方法[J]. 雷达学报(中英文), 2024, 13(5): 941–954. doi: 10.12000/JR24137.

    QIU Xiaolan, LUO Yitong, SONG Shujie, et al. Microwave vision three-dimensional SAR experimental system and full-polarimetric data processing method[J]. Journal of Radars, 2024, 13(5): 941–954. doi: 10.12000/JR24137.
    [11] DONG Shuhang, JIAO Zekun, ZHOU Liangjiang, et al. Enhanced 3D reconstruction method for polarimetric coherent optimal-based tomographic SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 5494–5508. doi: 10.1109/JSTARS.2024.3517843.
    [12] YANG Jian, PENG Yingning, and LIN Shiming. Similarity between two scattering matrices[J]. Electronics Letters, 2001, 37(3): 193–194. doi: 10.1049/el:20010104.
    [13] 张锐, 洪峻, 明峰. 基于极化相似度的全极化SAR自动目标识别算法[J]. 国外电子测量技术, 2010, 29(5): 24–27, 46. doi: 10.3969/j.issn.1002-8978.2010.05.005.

    ZHANG Rui, HONG Jun, and MING Feng. Full polarimetry SAR ATR algorithm based on polarimetry similarity[J]. Foreign Electronic Measurement Technology, 2010, 29(5): 24–27, 46. doi: 10.3969/j.issn.1002-8978.2010.05.005.
    [14] 徐牧, 王雪松, 肖顺平. 基于改善极化相似性的极化SAR目标增强新方法[J]. 电子与信息学报, 2008, 30(5): 1047–1051. doi: 10.3724/SP.J.1146.2007.00754.

    XU Mu, WANG Xuesong, and XIAO Shunping. Target enhancement in POL-SAR imagery based on the improvement of polarization characteristics similarity[J]. Journal of Electronics & Information Technology, 2008, 30(5): 1047–1051. doi: 10.3724/SP.J.1146.2007.00754.
    [15] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
    [16] BARANIUK R G. Compressive sensing [lecture notes][J]. IEEE Signal Processing Magazine, 2007, 24(4): 118–121. doi: 10.1109/MSP.2007.4286571.
    [17] DONG Shuhang, JIAO Zekun, ZHOU Liangjiang, et al. A novel filtering method of 3D reconstruction point cloud from tomographic SAR[J]. Remote Sensing, 2023, 15(12): 3076. doi: 10.3390/rs15123076.
    [18] WANG Chunyi, YAN Qiancheng, QIU Xiaolan, et al. A geometric semantic enhanced TomoSAR reconstruction algorithm in an urban area: Analysis and application[J]. Journal of Remote Sensing, 2025, 5: 0583. doi: 10.34133/remotesensing.0583.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-03
  • 修回日期:  2025-12-14
  • 网络出版日期:  2025-12-30

目录

    /

    返回文章
    返回