WANG Yingfu, YIN Jiapeng, LU Zhonghao, et al. Analysis of the influence of distributed interrupted-sampling repeating signals on airborne interferometer parameter measurements[J]. Journal of Radars, 2024, 13(5): 1037–1048. doi: 10.12000/JR24090
Citation: CAI Xiang, WEI Shunjun, WEN Yanbo, et al. Precise reconstruction method for hidden targets based on non-line-of-sight radar 3D imaging[J]. Journal of Radars, 2024, 13(4): 791–806. doi: 10.12000/JR24060

Precise Reconstruction Method for Hidden Targets Based on Non-line-of-sight Radar 3D Imaging

DOI: 10.12000/JR24060 CSTR: 32380.14.JR24060
Funds:  The National Natural Science Foundation of China (62271108)
More Information
  • Corresponding author: WEI Shunjun, weishunjun@uestc.edu.cn
  • Received Date: 2024-04-03
  • Rev Recd Date: 2024-05-19
  • Available Online: 2024-05-25
  • Publish Date: 2024-06-25
  • Non-Line-Of-Sight (NLOS) 3D imaging radar is an emerging technology that utilizes multipath scattering echoes to detect hidden targets. However, this technology faces challenges such as the separation of multipath echoes, reduction of aperture occlusion, and phase errors of reflective surfaces, which hinder the high-precision imaging of hidden targets when using traditional Line-Of-Sight (LOS) radar imaging methods. To address these challenges, this paper proposes a precise imaging method for NLOS hidden targets based on Sparse Iterative Reconstruction (NSIR). In this method, we first establish a multipath signal model for NLOS millimeter-wave 3D imaging radar. By exploiting the characteristics of LOS/NLOS echoes, we extract the multipath echoes from hidden targets using a model-driven approach to realize the separation of LOS/NLOS echo signals. Second, we formulate a total variation multiconstraint optimization problem for reconstructing hidden targets, integrating multipath reflective surface phase errors. Using the split Bregman Total Variation (TV) regularization operator and the phase error estimation criterion based on the minimum mean square error, we jointly solve the multiconstraint optimization problem. This approach facilitates precise imaging and contour reconstruction of NLOS targets. Finally, we construct a planar scanning 3D imaging radar experimental platform and conduct experimental verification of targets such as knives and iron racks in a corner NLOS scenario. Results validate the capability of NLOS millimeter-wave 3D imaging radar in detecting hidden targets and the effectiveness of the method proposed in this paper.

     

  • [1]
    WEI Shunjun, WEI Jinshan, LIU Xinyuan, et al. Nonline-of-sight 3-D imaging using millimeter-wave radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5106518. doi: 10.1109/TGRS.2021.3112579.
    [2]
    孔令讲, 郭世盛, 陈家辉, 等. 多径利用雷达目标探测技术综述与展望[J]. 雷达学报(中英文), 2024, 13(1): 23–45. doi: 10.12000/JR23134.

    KONG Lingjiang, GUO Shisheng, CHEN Jiahui, et al. Overview and prospects of multipath exploitation radar target detection technology[J]. Journal of Radars, 2024, 13(1): 23–45. doi: 10.12000/JR23134.
    [3]
    杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2012.20010.

    Yang Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2012.20010.
    [4]
    丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063.

    DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063.
    [5]
    丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090.

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090.
    [6]
    VELTEN A, WILLWACHER T, GUPTA O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature communications, 2012, 3(1): 745. doi: 10.1038/ncomms1747.
    [7]
    KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature photonics, 2014, 8(10): 784–790. doi: 10.1038/nphoton.2014.189.
    [8]
    YEDIDIA A B, BARADAD M, THRAMPOULIDIS C, et al. Using unknown occluders to recover hidden scenes[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 12223–12231. doi: 10.1109/CVPR.2019.01251.
    [9]
    KIRMANI A, HUTCHISON T, DAVIS J, et al. Looking around the corner using transient imaging[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 159–166. doi: 10.1109/ICCV.2009.5459160.
    [10]
    LIU Xintong, WANG Jianyu, LI Zhupeng, et al. Non-line-of-sight reconstruction with signal-object collaborative regularization[J]. Light: Science & Applications, 2021, 10(1): 198. doi: 10.1038/s41377-021-00633-3.
    [11]
    LINDELL D B, WETZSTEIN G, and KOLTUN V. Acoustic non-line-of-sight imaging[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6773–6782. doi: 10.1109/CVPR.2019.00694.
    [12]
    ADIB F and KATABI D. See through walls with WiFi![C]. ACM SIGCOMM 2013 conference on SIGCOMM, Hong Kong, China, 2013: 75–86. doi: 10.1145/2486001.2486039.
    [13]
    PAULI M, GÖTTEL B, SCHERR S, et al. Miniaturized millimeter-wave radar sensor for high-accuracy applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1707–1715. doi: 10.1109/TMTT.2017.2677910.
    [14]
    WANG Xiao, XU Linhai, SUN Hongbin, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075–2084. doi: 10.1109/TITS.2016.2533542.
    [15]
    LEIGSNERING M, AHMAD F, AMIN M, et al. Multipath exploitation in through-the-wall radar imaging using sparse reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 920–939. doi: 10.1109/TAES.2013.120528.
    [16]
    SUME A, GUSTAFSSON M, HERBERTHSON M, et al. Radar detection of moving targets behind corners[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2259–2267. doi: 10.1109/TGRS.2010.2096471.
    [17]
    ZETIK R, ESCHRICH M, JOVANOSKA S, et al. Looking behind a corner using multipath-exploiting UWB radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1916–1926. doi: 10.1109/TAES.2015.140303.
    [18]
    YANG Xiaqing, FAN Shihao, GUO Shisheng, et al. NLOS target localization behind an L-shaped corner with an L-band UWB radar[J]. IEEE Access, 2020, 8: 31270–31286. doi: 10.1109/ACCESS.2020.2973046.
    [19]
    LI Songlin, GUO Shisheng, CHEN Jiahui, et al. Multiple targets localization behind L-shaped corner via UWB radar[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3087–3100. doi: 10.1109/TVT.2021.3068266.
    [20]
    KAMANN A, HELD P, PERRAS F, et al. Automotive radar multipath propagation in uncertain environments[C]. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, USA, 2018: 859–864. doi: 10.1109/ITSC.2018.8570016.
    [21]
    CAI Xiang, WEI Shunjun, WEN Yanbo, et al. Bayesian-Based 3-D MMW radar imaging of non-line-of-sight environments[C]. 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Guilin, China, 2023: 1–3. doi: 10.1109/CSRSWTC60855.2023.10427181.
    [22]
    CAI Xiang, WEI Shunjun, LIU Xinyuan, et al. Compressed sensing imaging of MMW automotive radar via non-line-of-sight observation[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 1225–1228. doi: 10.1109/IGARSS52108.2023.10282596.
    [23]
    WEN Yanbo, WEI Shunjun, WEI Jinshan, et al. Non-line-of-sight imaging of hidden moving target using millimeter-wave inverse synthetic aperture radar[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 555–558. doi: 10.1109/IGARSS46834.2022.9883939.
    [24]
    LIN Yuqing, LUO Yitong, QIU Xiaolan, et al. Non-line-of-sight target imaging in tomographic SAR by multipath signal analysis[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 7761–7764. doi: 10.1109/IGARSS52108.2023.10281638.
    [25]
    YEGULALP A F. Fast backprojection algorithm for synthetic aperture radar[C]. 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No99CH36249), Waltham, USA, 1999: 60–65. doi: 10.1109/NRC.1999.767270.
    [26]
    FRANCESCHETTI G and SCHIRINZI G. A SAR processor based on two-dimensional FFT codes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(2): 356–366. doi: 10.1109/7.53462.
    [27]
    LOPEZ-SANCHEZ J M and FORTUNY-GUASCH J. 3-D radar imaging using range migration techniques[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(5): 728–737. doi: 10.1109/8.855491.
    [28]
    BROWN W M. Synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1967, AES-3(2): 217–229. doi: 10.1109/TAES.1967.5408745.
    [29]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
    [30]
    FANG Jian, XU Zongben, ZHANG Bingchen, et al. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352–363. doi: 10.1109/JSTARS.2013.2263309.
    [31]
    WEI Shunjun, ZHANG Xiaoling, SHI Jun, et al. Sparse reconstruction for SAR imaging based on compressed sensing[J]. Progress in Electromagnetics Research, 2010, 109: 63–81. doi: 10.2528/PIER10080805.
    [32]
    ÇETIN M, STOJANOVIĆ I, ÖNHON N Ö, et al. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27–40. doi: 10.1109/MSP.2014.2312834.
    [33]
    BARANIUK R and STEEGHS P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 128–133. doi: 10.1109/RADAR.2007.374203.
    [34]
    XU Gang, XIA Xianggen, and WEI Hong. Nonambiguous SAR image formation of maritime targets using weighted sparse approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1454–1465. doi: 10.1109/TGRS.2017.2763147.
    [35]
    PU Wei, WU Junjie, WANG Xiaodong, et al. Joint sparsity-based imaging and motion error estimation for BFSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1393–1408. doi: 10.1109/TGRS.2018.2866437.
    [36]
    WEI Shunjun, ZHANG Xiaoling, and SHI Jun. Sparse autofocus via Bayesian learning iterative maximum and applied for LASAR 3-D imaging[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 0666–0669. doi: 10.1109/RADAR.2014.6875674.
    [37]
    STRONG D and CHAN T. Edge-preserving and scale-dependent properties of total variation regularization[J]. Inverse Problems, 2003, 19(6): S165–S187. doi: 10.1088/0266-5611/19/6/059.
    [38]
    OSHER S, BURGER M, GOLDFARB D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling & Simulation, 2005, 4(2): 460–489. doi: 10.1137/040605412.
    [39]
    WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-Net: Joint range migration and sparse reconstruction network for 3-D mmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405.
    [40]
    WANG Yingzhou, LI Lijun, and GONG Ke. Narrowband experimental study on millimeter-wave indoor propagation[C]. 1998 International Conference on Communication Technology, Beijing, China, 1998: 5. doi: 10.1109/ICCT.1998.741269.
    [41]
    HANSEN P C and O’LEARY D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1487–1503. doi: 10.1137/0914086.
    [42]
    CALVETTI D, REICHEL L, and SHUIBI A. L-curve and curvature bounds for Tikhonov regularization[J]. Numerical Algorithms, 2004, 35(2): 301–314. doi: 10.1023/B:NUMA.0000021764.16526.47.
  • Relative Articles

    [1]YUAN Weijie, WU Jun, SHI Yuye. Multi-UAV Collaborative Covert Communications: An ISAC-Based Approach[J]. Journal of Radars. doi: 10.12000/JR25018
    [2]REN Hang, SUN Zhichao, YANG Jianyu, WU Junjie. A Task Allocation Method for Swarm UAV SAR Based on Low Redundancy Chromosome Encoding[J]. Journal of Radars. doi: 10.12000/JR24218
    [3]LIANG Xiao, YE Shengbo, SONG Chenyang, YUAN Yubing, ZHANG Qunying, LIU Xiaojun, JIANG Hejun, LI Hong. Automatic Multitarget Detection Method Based on Distributed Through-wall Radar[J]. Journal of Radars, 2025, 14(1): 28-44. doi: 10.12000/JR24127
    [4]LI Zhi, TANG Chengyao, DAI Yongpeng, JIN Tian. Multirotor UAV-borne Vital Signs Sensing Using 4D Imaging Radar[J]. Journal of Radars, 2025, 14(1): 62-72. doi: 10.12000/JR24128
    [5]YANG Xiaopeng, GAO Weicheng, QU Xiaodong. Human Anomalous Gait Termination Recognition via Through-the-wall Radar Based on Micro-Doppler Corner Features and Non-Local Mechanism[J]. Journal of Radars, 2024, 13(1): 68-86. doi: 10.12000/JR23181
    [6]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [7]CHEN Yifan, LIU Jiangang, JIA Yong, GUO Shisheng, CUI Guolong. High-resolution Imaging Method for Through-the-wall Radar Based on Transfer Learning with Simulation Samples[J]. Journal of Radars, 2024, 13(4): 807-821. doi: 10.12000/JR24049
    [8]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [9]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [10]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [11]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [12]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [13]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [14]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [15]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [16]Zhang Pengfei, Li Gang, Huo Chaoying, Yin Hongcheng. Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors[J]. Journal of Radars, 2018, 7(5): 557-564. doi: 10.12000/JR18061
    [17]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [18]Bai Yang, Wu Yang, Yin Hongcheng, Que Xiaofeng. Indoor Measurement Research on Polarimetric Scattering Characteristics of UAV[J]. Journal of Radars, 2016, 5(6): 647-657. doi: 10.12000/JR16032
    [19]Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System[J]. Journal of Radars, 2016, 5(4): 333-349. doi: 10.12000/JR16089
    [20]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
  • Cited by

    Periodical cited type(9)

    1. 朱梦韬,张露瑶,李瑞,杨静. 基于HMM的逆雷达辐射源状态识别推理方法. 北京理工大学学报. 2024(02): 200-209 .
    2. 王沙飞,朱梦韬,李云杰,杨健,李岩. 对先进多功能雷达系统行为的识别、推理与预测:综述与展望. 信号处理. 2024(01): 17-55 .
    3. 付雨欣,黄洁,王建涛,党同心,李一鸣,孙震宇. 多功能相控阵雷达行为辨识综述. 电讯技术. 2024(04): 643-654 .
    4. 娄雨璇,孙闽红,尹帅. 基于近端策略优化算法和Mask-TIT网络的多功能雷达干扰决策方法. 数据采集与处理. 2024(06): 1355-1369 .
    5. 罗健,仇洪冰,周陬,顾宇,王若楠,费文浩. 基于SOM聚类平滑图信号生成的MFR工作模式识别方法. 桂林电子科技大学学报. 2023(02): 120-127 .
    6. 罗健. 一种基于图卷积网络的雷达工作模式识别方法. 成组技术与生产现代化. 2023(02): 14-19 .
    7. 廖艳苹,谢榕浩. 基于双层强化学习的多功能雷达认知干扰决策方法. 应用科技. 2023(06): 56-62 .
    8. 袁硕,拓世英,尚文秀,罗政昊,刘章孟. 电子侦察脉冲列中重频信息提取与应用综述. 信息对抗技术. 2023(06): 17-28 .
    9. 蒋能,张红敏,李一鸣. 基于分步变门限孤立森林的MFR波形单元无监督提取. 信息对抗技术. 2022(03): 76-85 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.7 %FULLTEXT: 30.7 %META: 52.6 %META: 52.6 %PDF: 16.7 %PDF: 16.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 1.0 %其他: 1.0 %Central District: 0.1 %Central District: 0.1 %China: 0.2 %China: 0.2 %Ecole-Valentin: 0.2 %Ecole-Valentin: 0.2 %Falls Church: 0.3 %Falls Church: 0.3 %Herndon: 0.1 %Herndon: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %上海: 3.0 %上海: 3.0 %东莞: 0.1 %东莞: 0.1 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.3 %佛山: 0.3 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.1 %内江: 0.1 %列克星敦: 0.1 %列克星敦: 0.1 %加利福尼亚州: 0.4 %加利福尼亚州: 0.4 %北京: 18.2 %北京: 18.2 %十堰: 0.2 %十堰: 0.2 %南京: 3.9 %南京: 3.9 %南宁: 0.1 %南宁: 0.1 %南昌: 0.6 %南昌: 0.6 %南通: 0.1 %南通: 0.1 %印多尔: 0.1 %印多尔: 0.1 %厦门: 0.3 %厦门: 0.3 %双鸭山: 0.1 %双鸭山: 0.1 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.9 %合肥: 0.9 %吉安: 0.1 %吉安: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.8 %嘉兴: 0.8 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %圣安东尼奥: 0.1 %圣安东尼奥: 0.1 %大理: 0.3 %大理: 0.3 %大连: 0.2 %大连: 0.2 %大阪: 0.1 %大阪: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %宁波: 0.1 %宁波: 0.1 %安康: 0.3 %安康: 0.3 %安顺: 0.1 %安顺: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.3 %宣城: 0.3 %宿州: 0.1 %宿州: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.1 %常德: 0.1 %广安: 0.1 %广安: 0.1 %广州: 1.2 %广州: 1.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.1 %延安: 0.1 %开封: 0.8 %开封: 0.8 %张家口: 1.0 %张家口: 1.0 %张家界: 0.2 %张家界: 0.2 %德里: 0.1 %德里: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %慕尼黑: 0.1 %慕尼黑: 0.1 %成都: 2.9 %成都: 2.9 %扬州: 0.4 %扬州: 0.4 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新余: 0.1 %新余: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 1.9 %昆明: 1.9 %朝阳: 0.2 %朝阳: 0.2 %本溪: 0.1 %本溪: 0.1 %杭州: 2.2 %杭州: 2.2 %格林维尔: 0.1 %格林维尔: 0.1 %武汉: 0.6 %武汉: 0.6 %永州: 0.1 %永州: 0.1 %汕头: 0.4 %汕头: 0.4 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %河源: 0.2 %河源: 0.2 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %海口: 0.2 %海口: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.2 %深圳: 2.2 %温州: 0.5 %温州: 0.5 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.4 %珠海: 0.4 %白城: 0.1 %白城: 0.1 %百色: 0.2 %百色: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %纽约: 0.6 %纽约: 0.6 %绵阳: 1.4 %绵阳: 1.4 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.3 %莫斯科: 0.3 %营口: 0.1 %营口: 0.1 %衡水: 0.5 %衡水: 0.5 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 3.2 %西宁: 3.2 %西安: 3.8 %西安: 3.8 %诺沃克: 5.5 %诺沃克: 5.5 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.1 %赣州: 0.1 %运城: 0.3 %运城: 0.3 %通辽: 0.1 %通辽: 0.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 1.1 %重庆: 1.1 %金昌: 0.1 %金昌: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 2.2 %长沙: 2.2 %阜新: 0.1 %阜新: 0.1 %阿什本: 0.2 %阿什本: 0.2 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %陇南: 0.1 %陇南: 0.1 %陵水: 0.1 %陵水: 0.1 %青岛: 0.8 %青岛: 0.8 %首尔特别: 0.2 %首尔特别: 0.2 %香港: 0.2 %香港: 0.2 %马尔默: 0.1 %马尔默: 0.1 %马尼拉: 0.2 %马尼拉: 0.2 %驻马店: 0.1 %驻马店: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.5 %齐齐哈尔: 0.5 %其他其他Central DistrictChinaEcole-ValentinFalls ChurchHerndonRussian Federation上海东莞伦敦佛山六安兰州内江列克星敦加利福尼亚州北京十堰南京南宁南昌南通印多尔厦门双鸭山台北台州合肥吉安呼和浩特哈尔滨哥伦布嘉兴圣克拉拉圣安东尼奥大理大连大阪天津太原威海宁波安康安顺宜春宣城宿州常州常德广安广州库比蒂诺延安开封张家口张家界德里德黑兰慕尼黑成都扬州揭阳新乡新余无锡昆明朝阳本溪杭州格林维尔武汉永州汕头江门沈阳沧州河源洛杉矶洛阳济南海口淄博淮南深圳温州湖州湘潭漯河潍坊烟台珠海白城百色石家庄福州纽约绵阳罗马芒廷维尤芝加哥苏州莫斯科营口衡水衡阳衢州襄阳西宁西安诺沃克贵阳赣州运城通辽遵义邯郸邵阳郑州重庆金昌长春长沙阜新阿什本阿姆斯特丹陇南陵水青岛首尔特别香港马尔默马尼拉驻马店黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1490) PDF downloads(425) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint