Loading [MathJax]/jax/output/SVG/jax.js
WANG Junjie, FENG Dejun, WANG Zhisong, et al. Synthetic aperture rader imaging characteristics of electronically controlled time-varying electromagnetic materials[J]. Journal of Radars, 2021, 10(6): 865–873. doi: 10.12000/JR21104
Citation: YUAN Yubing, YE Shengbo, JI Yicai, et al. Fast refocusing algorithm based on three-dimensional wall compensation[J]. Journal of Radars, 2024, 13(4): 822–837. doi: 10.12000/JR24051

Fast Refocusing Algorithm Based on Three-dimensional Wall Compensation

DOI: 10.12000/JR24051
Funds:  The National Key R&D Program of China (2021YFC3002100); Science and Technology on Near-Surface Detection Laboratory (6142414220710)
More Information
  • Ultra-wideband through-wall radar, leveraging its ability to penetrate walls, can be used together with Multiple-Input Multiple-Output (MIMO) technology to image hidden targets behind walls. This approach provides rich information for detecting and locating people within buildings. This paper introduces a closed-loop interferometric calibration method based on a multitransmitter multireceiver ultrawideband wall-penetrating radar system in the Frequency Modulated Continuous Wave (FMCW) regime. This method aims to correct scattering issues caused by internal system errors. The presence of walls causes the target imaging position to deviate from the real position. To address this, this paper derives a three-Dimensional (3D) wall compensation algorithm jointing channels and pixel points. Then, a fast refocusing algorithm is proposed based on the geometric properties of the imaging area. The first step involves removing the influence of walls on delay time and determining the presence of the target. Subsequently, in view of the geometric properties of the region, a spherical coordinate grid division adapted to the region shape is selected. Localized refocusing is then performed in the subregion. This avoids the issue of electromagnetic wave attenuation, causing strong targets to mask weak ones in the imaging results. At the same time, the adoption of spherical coordinates for gridding and localized imaging greatly reduces the overall time consumption by the algorithm. Through simulation analysis and experimental verification, the proposed calibration method can effectively compensate for system errors. The fast refocusing algorithm can be used to realize multitarget 3D localization of the human body behind walls, with the localization accuracy of each dimension surpassing 10 cm and computational speeds improving by five times compared with those of existing algorithms. In terms of target detection probability, the proposed algorithm consistently identifies weak targets that other algorithms may overlook.

     

  • [1]
    MAITI S and BHATTACHARYA A. Microwave detection of respiration rate of a living human hidden behind an inhomogeneous optically opaque medium[J]. IEEE Sensors Journal, 2021, 21(5): 6133–6144. doi: 10.1109/JSEN.2020.3043846.
    [2]
    YE Shengbo, ZHOU Bin, and FANG Guangyou. Design of a novel ultrawideband digital receiver for pulse ground-penetrating radar[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 656–660. doi: 10.1109/LGRS.2010.2098844.
    [3]
    FANG Guangyou. The research activities of Ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Singapore, Singapore, 2007: 43–45. doi: 10.1109/ICUWB.2007.4380912.
    [4]
    QU Xiaodong, GAO Weicheng, MENG Haoyu, et al. Indoor human behavior recognition method based on wavelet scattering network and conditional random field model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5104815. doi: 10.1109/TGRS.2023.3276023.
    [5]
    金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [6]
    QIU Lei, JIN Tian, LU Biying, et al. An isophase-based life signal extraction in through-the-wall radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2): 193–197. doi: 10.1109/LGRS.2016.2633622.
    [7]
    金添, 宋勇平. 超宽带雷达建筑物结构稀疏成像[J]. 雷达学报, 2018, 7(3): 275–284. doi: 10.12000/JR18031.

    JIN Tian and SONG Yongping. Sparse imaging of building layouts in ultra-wideband radar[J]. Journal of Radars, 2018, 7(3): 275–284. doi: 10.12000/JR18031.
    [8]
    YUAN Yubing, JI Yicai, YE Shengbo, et al. A clutter identification and removal method based on long delay lines and cross-correlation in through-wall detection[J]. Applied Sciences, 2024, 14(3): 1299. doi: 10.3390/app14031299.
    [9]
    MOHAMMED I, COLLINGS I B, and HANLY S V. Multiple target localization through-the-wall using non-coherent Bi-static radar[C]. 2019 13th International Conference on Signal Processing and Communication Systems, Gold Coast, Australia, 2019: 1–8. doi: 10.1109/ICSPCS47537.2019.9008415.
    [10]
    刘新, 阎焜, 杨光耀, 等. UWB-MIMO穿墙雷达三维成像与运动补偿算法研究[J]. 电子与信息学报, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356.

    LIU Xin, YAN Kun, YANG Guangyao, et al. Study on 3D imaging and motion compensation algorithm for UWB-MIMO through-wall radar[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2253–2260. doi: 10.11999/JEIT190356.
    [11]
    LIN Bo, LI Chao, JI Yicai, et al. Efficient scaling techniques for 2-D sparse MIMO array far-field imaging[J]. IEEE Sensors Journal, 2024, 24(8): 12604–12615. doi: 10.1109/JSEN.2024.3354246.
    [12]
    AFTANAS M, ROVNAKOVA J, DRUTAROVSKY M, et al. Efficient method of TOA estimation for through wall imaging by UWB radar[C]. 2008 IEEE International Conference on Ultra-Wideband, Hannover, Germany, 2008: 101–104. doi: 10.1109/ICUWB.2008.4653361.
    [13]
    AHMAD F, AMIN M G, and KASSAM S A. Synthetic aperture beamformer for imaging through a dielectric wall[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 271–283. doi: 10.1109/TAES.2005.1413761.
    [14]
    WANG Hanning, LU Biying, ZHOU Zhimin, et al. Through-the-wall imaging and correction based on the estimation of wall parameters[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1327–1330. doi: 10.1109/CIE-Radar.2011.6159802.
    [15]
    CUI Guolong, KONG Lingjiang, and YANG Jianyu. A back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging[C]. 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 123–126. doi: 10.1109/APSAR.2007.4418570.
    [16]
    ROVNAKOVA J and KOCUR D. Compensation of wall effect for through wall tracking of moving targets[J]. Radioengineering, 2009, 18(2): 189–195.
    [17]
    JIN Tian, CHEN Bo, and ZHOU Zhimin. Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1836–1843. doi: 10.1109/TGRS.2012.2206395.
    [18]
    LIU Jiangang, KONG Lingjiang, YANG Xiaobo, et al. Refraction angle approximation algorithm for wall compensation in TWRI[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 943–946. doi: 10.1109/LGRS.2016.2555291.
    [19]
    ZHAO Yang, LU Biying, and SUN Xin. Three-dimensional imaging for UWB though-the-wall radar[C]. 2013 IEEE Third International Conference on Information Science and Technology, Yangzhou, China, 2013: 1503–1506. doi: 10.1109/ICIST.2013.6747822.
    [20]
    AFTANAS I M. Through wall imaging with UWB radar system[D]. [Ph.D. dissertation], Technical University of Kosice, 2010.
    [21]
    GU Xiang and ZHANG Yunhua. Autofocus imaging simulation for through-wall radar by using FDTD with unknown wall characteristics[C]. 2010 Asia-Pacific Microwave Conference, Yokohama, Japan, 2010: 1657–1660.
  • Relative Articles

    [1]LIAO Zhipeng, DUAN Keqing, HE Jinjun, QIU Zizhou, WANG Yongliang. Interpretable STAP Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Radars, 2024, 13(4): 917-928. doi: 10.12000/JR24024
    [2]LI Zhongyu, PI Haozhuo, LI Jun’ao, YANG Qing, WU Junjie, YANG Jianyu. Clutter Suppression Technology Based Space-time Adaptive ANM-ADMM-Net for Bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24032
    [3]QUAN Yinghui, WU Yaojun, DUAN Lining, XU Gang, XUE Min, LIU Zhixing, XING Mengdao. A Review of Radar Signal Processing Based on Sparse Recovery[J]. Journal of Radars, 2024, 13(1): 46-67. doi: 10.12000/JR23211
    [4]HU Xueyao, LIANG Can, LU Shanshan, WANG Zaiyang, ZHENG Le, LI Yang. Matrix Completion-based Range-Doppler Spectrum Estimation for Random Stepped-frequency Radars[J]. Journal of Radars, 2024, 13(1): 200-214. doi: 10.12000/JR23176
    [5]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [6]LIN Yun, ZHANG Lin, WEI Lideng, ZHANG Hanqing, FENG Shanshan, WANG Yanping, HONG Wen. Research on Full-aspect Three-dimensional SAR Imaging Method for Complex Structural Facilities without Prior Model[J]. Journal of Radars, 2022, 11(5): 909-919. doi: 10.12000/JR22148
    [7]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [8]CUI Guolong, FAN Tao, KONG Yukai, YU Xianxiang, SHA Minghui, KONG Lingjiang. Pseudo-random Agility Technology for Interpulse Waveform Parameters in Airborne Radar[J]. Journal of Radars, 2022, 11(2): 213-226. doi: 10.12000/JR21189
    [9]LI Wenna, ZHANG Shunsheng, WANG Wenqin. Multitarget-tracking Method for Airborne Radar Based on a Transformer Network[J]. Journal of Radars, 2022, 11(3): 469-478. doi: 10.12000/JR22009
    [10]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [11]QU Haiyou, CHENG Di, CHEN Chang, CHEN Weidong. High-resolution Sparse Self-calibration Imaging for Vortex Radar with Phase Error[J]. Journal of Radars, 2021, 10(5): 699-717. doi: 10.12000/JR21094
    [12]Wang Yuzhuo, Zhu Shengqi, Xu Jingwei. A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar[J]. Journal of Radars, 2018, 7(2): 202-211. doi: 10.12000/JR18016
    [13]Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019
    [14]Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects[J]. Journal of Radars, 2017, 6(6): 575-586. doi: 10.12000/JR17073
    [15]Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101
    [16]Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091
    [17]Wang Yong-liang, Liu Wei-jian, Xie Wen-chong, Duan Ke-qing, Gao Fei, Wang Ze-tao. Research Progress of Space-Time Adaptive Detection for Airborne Radar[J]. Journal of Radars, 2014, 3(2): 201-207. doi: 10.3724/SP.J.1300.2014.13081
    [18]Wang Fu-you, Luo Ding, Liu Hong-wei. Low-resolution Airborne Radar Aircraft Target Classification[J]. Journal of Radars, 2014, 3(4): 444-449. doi: 10.3724/SP.J.1300.2014.14075
    [19]Duan Ke-qing, Wang Ze-tao, Xie Wen-chong, Gao Fei, Wang Yong-liang. A Space-time Adaptive Processing Algorithm Based on Joint Sparse Recovery[J]. Journal of Radars, 2014, 3(2): 229-234. doi: 10.3724/SP.J.1300.2014.13149
    [20]Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, Meng Hua-dong. An Overview on Sparse Recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217-228. doi: 10.3724/SP.J.1300.2014.14002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.5 %FULLTEXT: 34.5 %META: 58.2 %META: 58.2 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %其他: 1.0 %其他: 1.0 %Algeria: 0.1 %Algeria: 0.1 %Australia: 0.0 %Australia: 0.0 %Canton: 0.0 %Canton: 0.0 %China: 1.8 %China: 1.8 %Germany: 0.0 %Germany: 0.0 %India: 0.0 %India: 0.0 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Malvern: 0.1 %Malvern: 0.1 %Nahant: 0.1 %Nahant: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Seattle: 0.0 %Seattle: 0.0 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Turkey: 0.1 %Turkey: 0.1 %United Kingdom: 0.4 %United Kingdom: 0.4 %United States: 0.3 %United States: 0.3 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 1.1 %[]: 1.1 %三明: 0.0 %三明: 0.0 %上海: 1.3 %上海: 1.3 %上饶: 0.0 %上饶: 0.0 %东京都: 0.2 %东京都: 0.2 %东莞: 0.3 %东莞: 0.3 %中卫: 0.2 %中卫: 0.2 %临汾: 0.0 %临汾: 0.0 %丹东: 0.1 %丹东: 0.1 %乌海: 0.0 %乌海: 0.0 %乐山: 0.1 %乐山: 0.1 %伊春: 0.0 %伊春: 0.0 %伊犁: 0.0 %伊犁: 0.0 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %北京: 6.3 %北京: 6.3 %南京: 2.2 %南京: 2.2 %南宁: 0.1 %南宁: 0.1 %南平: 0.0 %南平: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.8 %合肥: 0.8 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.3 %哈尔滨: 0.3 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.1 %大同: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.0 %宁波: 0.0 %安卡拉: 0.1 %安卡拉: 0.1 %安康: 0.1 %安康: 0.1 %安顺: 0.0 %安顺: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.2 %宣城: 0.2 %巴中: 0.2 %巴中: 0.2 %巴音郭楞蒙古自治州: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 1.1 %广州: 1.1 %库比蒂诺: 0.4 %库比蒂诺: 0.4 %廊坊: 0.0 %廊坊: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 2.8 %张家口: 2.8 %张家界: 0.0 %张家界: 0.0 %徐州: 0.1 %徐州: 0.1 %德里: 0.1 %德里: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %怀化: 0.1 %怀化: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 3.5 %成都: 3.5 %扬州: 0.3 %扬州: 0.3 %新加坡: 0.3 %新加坡: 0.3 %新泽西: 0.0 %新泽西: 0.0 %无锡: 0.2 %无锡: 0.2 %日喀则: 0.1 %日喀则: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.8 %昆明: 0.8 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朔州: 0.0 %朔州: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.6 %杭州: 0.6 %桂林: 0.1 %桂林: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.6 %武汉: 0.6 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %河源: 0.0 %河源: 0.0 %泉州: 0.1 %泉州: 0.1 %泰安: 0.0 %泰安: 0.0 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.8 %深圳: 0.8 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滁州: 0.1 %滁州: 0.1 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %罗奥尔凯埃: 0.3 %罗奥尔凯埃: 0.3 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.0 %苏州: 1.0 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 33.8 %西宁: 33.8 %西安: 1.5 %西安: 1.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.5 %运城: 0.5 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %酒泉: 0.1 %酒泉: 0.1 %里奇兰: 0.1 %里奇兰: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %隆德: 0.0 %隆德: 0.0 %隆格伊: 0.1 %隆格伊: 0.1 %青岛: 0.4 %青岛: 0.4 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AlgeriaAustraliaCantonChinaGermanyIndiaKennedy TownMalvernNahantRochesterSeattleSingaporeTaichungTurkeyUnited KingdomUnited StatesViet Nam[]三明上海上饶东京都东莞中卫临汾丹东乌海乐山伊春伊犁伦敦佛山信阳六安兰州兰辛内江凉山加利福尼亚州北京南京南宁南平南昌南通卡拉奇厦门台北台州台湾省合肥呼和浩特咸阳哈尔滨商丘嘉兴大同大庆大连天津太原威海娄底宁波安卡拉安康安顺宜春宝鸡宣城巴中巴音郭楞蒙古自治州巴黎常州常德广州库比蒂诺廊坊开封张家口张家界徐州德里德黑兰怀化惠州成都扬州新加坡新泽西无锡日喀则日照昆明晋中晋城朔州朝阳杭州桂林榆林武汉汉中汕头沈阳河源泉州泰安泰米尔纳德洛杉矶洛阳济南海口海得拉巴淄博淮北淮南深圳清远温州渭南湖州湘潭滁州漯河濮阳烟台玉林石家庄福州秦皇岛纽约绍兴绵阳罗奥尔凯埃罗马芒廷维尤芝加哥苏州莆田莫斯科葫芦岛衡水衡阳衢州西宁西安诺沃克贵阳赣州运城邢台邯郸郑州酒泉里奇兰重庆金华镇江长春长沙长治阳泉阿姆斯特丹隆德隆格伊青岛香港特别行政区马鞍山黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(660) PDF downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint