Citation: | ZHOU Zheng, CUI Zongyong, CAO Zongjie, et al. Feature-transferable pyramid network for cross-scale object detection in SAR images[J]. Journal of Radars, 2021, 10(4): 544–558. doi: 10.12000/JR21059 |
[1] |
LIU Nengyuan, CAO Zongjie, CUI Zongyong, et al. Multi-scale proposal generation for ship detection in SAR images[J]. Remote Sensing, 2019, 11(5): 526. doi: 10.3390/rs11050526
|
[2] |
AN Wentao, XIE Chunhua, and YUAN Xinzhe. An improved iterative censoring scheme for CFAR ship detection with SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4585–4595. doi: 10.1109/TGRS.2013.2282820
|
[3] |
LI Tao, LIU Zheng, XIE Rong, et al. An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 184–194. doi: 10.1109/JSTARS.2017.2764506
|
[4] |
DAI Hui, DU Lan, WANG Yan, et al. A modified CFAR algorithm based on object proposals for ship target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1925–1929. doi: 10.1109/LGRS.2016.2618604
|
[5] |
ZHAI Liang, LI Yu, and SU Yi. Inshore ship detection via saliency and context information in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1870–1874. doi: 10.1109/LGRS.2016.2616187
|
[6] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
[7] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
|
[8] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142–158. doi: 10.1109/TPAMI.2015.2437384
|
[9] |
GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
|
[10] |
张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841–851. doi: 10.12000/JR19111
ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, et al. High-speed and High-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841–851. doi: 10.12000/JR19111
|
[11] |
HONG Feng, LU Changhua, LIU Chun, et al. A traffic surveillance multi-scale vehicle detection object method base on encoder-decoder[J]. IEEE Access, 2020, 8: 47664–47674. doi: 10.1109/ACCESS.2020.2979260
|
[12] |
陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3): 413–424. doi: 10.12000/JR19041
CHEN Huiyuan, LIU Zeyu, GUO Weiwei, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3): 413–424. doi: 10.12000/JR19041
|
[13] |
FANG Qingyun, ZHANG Lin, and WANG Zhaokui. An efficient feature pyramid network for object detection in remote sensing imagery[J]. IEEE Access, 2020, 8: 93058–93068. doi: 10.1109/ACCESS.2020.2993998
|
[14] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
[15] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[16] |
JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20892. doi: 10.1109/ACCESS.2018.2825376
|
[17] |
顾佼佼, 李炳臻, 刘克, 等. 基于改进Faster R-CNN的红外舰船目标检测算法[J]. 红外技术, 2021, 43(2): 170–178.
GU Jiaojiao, LI Bingzhen, LIU Ke, et al. Infrared ship target detection algorithm based on improved faster R-CNN[J]. Infrared Technology, 2021, 43(2): 170–178.
|
[18] |
NIE Xuan, DUAN Mengyang, DING Haoxuan, et al. Attention mask R-CNN for ship detection and segmentation from remote sensing images[J]. IEEE Access, 2020, 8: 9325–9334. doi: 10.1109/ACCESS.2020.2964540
|
[19] |
陈华杰, 吴栋, 谷雨. 密集子区域切割的任意方向舰船快速检测[J]. 中国图象图形学报, 2021, 26(3): 654–662. doi: 10.11834/jig.200111
CHEN Huajie, WU Dong, and GU Yu. Fast detection algorithm for ship in arbitrary direction with dense subregion cutting[J]. Journal of Image and Graphics, 2021, 26(3): 654–662. doi: 10.11834/jig.200111
|
[20] |
ZHANG Miaohui, PANG Kangning, GAO Chengcheng, et al. Multi-scale aerial target detection based on densely connected inception ResNet[J]. IEEE Access, 2020, 8: 84867–84878. doi: 10.1109/ACCESS.2020.2992647
|
[21] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243.
|
[22] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
|
[23] |
LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–6. doi: 10.1109/BIGSARDATA.2017.8124934.
|
[24] |
孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097
SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
|
[25] |
WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765
|
[26] |
BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. 2020, in press.
|
[27] |
LIU Shu, QI Lu, QIN Haifeng, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768. doi: 10.1109/CVPR.2018.00913.
|
[28] |
CUI Zongyong, LI Qi, CAO Zongjie, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983–8997. doi: 10.1109/TGRS.2019.2923988
|
[29] |
CUI Zongyong, WANG Xiaoya, LIU Nengyuan, et al. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 379–391. doi: 10.1109/TGRS.2020.2997200
|