CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143
Citation:
WU You, XI Rongyan, PAN Xiaotian, et al. Research on a phased electromagnetic surface-based W-band radar system[J]. Journal of Radars, 2021, 10(2): 281–287. doi: 10.12000/JR21041
CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143
Citation:
WU You, XI Rongyan, PAN Xiaotian, et al. Research on a phased electromagnetic surface-based W-band radar system[J]. Journal of Radars, 2021, 10(2): 281–287. doi: 10.12000/JR21041
This paper introduces a W-band phased electromagnetic surface radar system. This phased electromagnetic surface works at 92~96 GHz and is manufactured with general PCB technology and processing accuracy requirements. The appropriate unit design makes the DC bias voltage of each PIN diode on the phased electromagnetic surface controlled for the current reversal purpose at a low cost and portability. A 180° phase shift of the unit cell can be provided as the current direction on the unit cell is reversed. Beam scanning in different directions can be formed when inputting the right spatial codes. This transmission type phased electromagnetic surface with the ability of beam scanning is used as the receiving antenna of the radar system. This paper presents a W-band phased electromagnetic surface radar system and its manufacture and measurement results, which are fundamental to further research of precision guidance, target identification, and imaging.
表2给出了在不同的目标物体与发射端辐射器距离下,平面波和涡旋微波量子照射隐身目标物体所得到的回波功率(V表示垂直极化,H表示水平极化,V-V表示垂直极化发射和垂直极化接收,其他表示同理)。其中目标物体材质为金属衬底覆盖隐身材料,距离为60 cm, 100 cm 和140 cm,均大于远场区条件24.2 cm。根据测量结果可以看出,对于由隐身吸波材料构成的平板目标,涡旋微波量子与平面波相比,最大回波功率提升8.78 dB。约9 dB的性能提升与理论计算相一致,从而通过实验验证了前述理论的正确性。
表
2
实验中不同距离下平面波和涡旋微波量子的归一化回波功率
Table
2.
Normalized echo power with regards to distance between the antenna and target considering the plane wave and vortex microwave photon in experiment
仿真场景如下:考虑机载雷达场景,工作频段为Ka波段,存在3个隐身目标物体,分别距离雷达收发端50 km, 60 km和75 km,其电参数与第4.2节中给出的3种典型隐身材料一致。采用模态0(即平面波)、模态1和模态2的涡旋微波量子照射目标。假定各个模态的辐射效率和波束形状一致。雷达信号采用线性调频信号填塞脉冲,脉冲压缩比为5,脉冲重复频率保证所有目标物体均落在距离门之内。3种不同模态的信号具有相同的脉冲填塞信号形式和发射功率,即相同中心频率和压缩比的线性调频信号。这些条件保证了目标物体的接收信号功率的差异完全归因于OAM模态的不同。在距离向上,针对每种隐身材料,平面波和涡旋微波量子均在3个目标物位置处(50 km, 60 km和75 km)输出较大功率。由于目标物体均落在距离门内,一维距离成像上不会出现距离模糊。
CUI Tiejun, WU Haotian, and LIU Shuo. Research progress of information metamaterials[J]. Acta Physica Sinica, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
[2]
GANDINI E, SVEDIN J, BRYLLERT T, et al. Optomechanical system design for dual-mode stand-off submillimeter wavelength imagers[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(4): 393–403. doi: 10.1109/TTHZ.2017.2700759
[3]
SHEEN D M, MCMAKIN D L, and HALL T E. Cylindrical millimeter-wave imaging technique for concealed weapon detection[C]. SPIE 3240, 26th AIPR Workshop: Exploiting New Image Sources and Sensors, Washington, United States, 1997: 242–250.
[4]
PAN Xiaotian, YANG Fan, XU Shenheng, et al. Review of W-band reconfigurable reflectarray and transmitarray antennas at Tsinghua university[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–2. doi: 10.23919/EuCAP48036.2020.9135903.
[5]
YANG Huanhuan, YANG Fan, CAO Xiangyu, et al. A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-Band[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3024–3032. doi: 10.1109/TAP.2017.2694703
[6]
RAMAN S, BARKER N S, and REBEIZ G M. A W-band dielectric-lens-based integrated monopulse radar receiver[J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(12): 2308–2316. doi: 10.1109/22.739216
[7]
SCHAFFNER J H, LYNCH J J, GUINN K V, et al. A wideband radiometer module for an unamplified direct detection scalable W-band imaging array[C]. SPIE 6948, Passive Millimeter-Wave Imaging Technology XI, Orlando, United States, 2008: 694807.
[8]
KANGASLAHTI P, SJOMAN P, JUKKALA P, et al. A W-band radar receiver for cloud observations[C]. 2002 32nd European Microwave Conference, Milan, Italy, 2002: 1–4. doi: 10.1109/EUMA.2002.339437.
[9]
LEONARDI M, PIRACCI E G, and FASTELLA V. W-band multi-radar processing for airport foreign object debris and humans detection[C]. 2019 European Microwave Conference in Central Europe (EuMCE), Prague, Czech Republic, 2019: 285–288.
[10]
JASINSKI T, ANTIPOV I, MONTEIRO S T, et al. W-band maritime target classification using high resolution range profiles[C]. 2013 International Conference on Radar, Adelaide, Australia, 2013: 356–361. doi: 10.1109/RADAR.2013.6652013.
[11]
BROOKER G M, BIRCH D, and SOLMS J. W-band airborne interrupted frequency modulated CW imaging radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 955–972. doi: 10.1109/TAES.2005.1541441
ZHANG Hui, WANG Hui, PAN Jiaqi, et al. Research on W-band FMCW ISAR system imaging and outfield experiment[J]. Aerospace Shanghai, 2018, 35(6): 24–29. doi: 10.19328/j.cnki.1006-1630.2018.06.005
[13]
PAN Xiaotian, YANG Fan, XU Shenheng, et al. W-band electronic focus-scanning by a reconfigurable transmitarray for millimeter-wave imaging applications[J]. Applied Computational Electromagnetics Society Journal, 2020, 35(5): 580–586.
CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143
CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143
Table
2.
Normalized echo power with regards to distance between the antenna and target considering the plane wave and vortex microwave photon in experiment