Volume 10 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
ZHOU Xueke, LIU Chang, and ZHOU Bin. Ship detection in SAR images based on multi-scale features fusion and channel relation calibration of features[J]. Journal of Radars, 2021, 10(4): 531–543. doi: 10.12000/JR21021
Citation: ZHOU Xueke, LIU Chang, and ZHOU Bin. Ship detection in SAR images based on multi-scale features fusion and channel relation calibration of features[J]. Journal of Radars, 2021, 10(4): 531–543. doi: 10.12000/JR21021

Ship Detection in SAR Images Based on Multiscale Feature Fusion and Channel Relation Calibration of Features

doi: 10.12000/JR21021
Funds:  The State Key Research Development Program of China (2017YFB0503001)
More Information
  • Corresponding author: ZHOU Xueke, zhouxk96@163.com
  • Received Date: 2021-03-04
  • Rev Recd Date: 2021-04-05
  • Available Online: 2021-04-29
  • Publish Date: 2021-08-28
  • Deep-learning technology has enabled remarkable results for ship detection in SAR images. However, in view of the complex and changeable backgrounds of SAR ship images, how to accurately and efficiently extract target features and improve detection accuracy and speed is still a huge challenge. To solve this problem, a ship detection algorithm based on multiscale feature fusion and channel relation calibration of features is proposed in this paper. First, based on Faster R-CNN, a channel attention mechanism is introduced to calibrate the channel relationship between features in the feature extraction network, so as to improve the network’s expression ability for extraction of ship features in different scenes. Second, unlike the original method of generating candidate regions based on single-scale features, this paper introduces an improved feature pyramid structure based on a neural architecture search algorithm, which helps improve the performance of the network. The multiscale features are effectively fused to settle the problem of missing detections of small targets and adjacent inshore targets. Experimental results on the SSDD dataset show that, compared with the original Faster R-CNN, the proposed algorithm improves detection accuracy from 85.4% to 89.4% and the detection rate from 2.8 FPS to 10.7 FPS. Thus, this method effectively achieves high-speed and high-accuracy SAR ship detection, which has practical benefits.

     

  • loading
  • [1]
    MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [2]
    郭倩, 王海鹏, 徐丰. SAR图像飞机目标检测识别进展[J]. 雷达学报, 2020, 9(3): 497–513. doi: 10.12000/JR20020

    GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020
    [3]
    WACKERMAN C C, FRIEDMAN K S, PICHEL W G, et al. Automatic detection of ships in RADARSAT-1 SAR imagery[J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568–577. doi: 10.1080/07038992.2001.10854896
    [4]
    陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3): 413–424. doi: 10.12000/JR19041

    CHEN Huiyuan, LIU Zeyu, GUO Weiwei, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3): 413–424. doi: 10.12000/JR19041
    [5]
    李健伟, 曲长文, 邵嘉琦, 等. 基于深度学习的SAR图像舰船检测数据集及性能分析[C]. 第五届高分辨率对地观测学术年会论文集, 西安, 2018: 180–201.

    LI Jianwei, QU Changwen, SHAO Jiaqi, et al. Dataset and performance analysis of ship detection methods based on deep learning[C]. The 5th China High Resolution Earth Observation Conference, Xi’an, China, 2018: 180–201.
    [6]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
    [7]
    GIRSHICK R. Fast R-CNN[C]. IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
    [8]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [9]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [10]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [11]
    李健伟, 曲长文, 彭书娟. 基于级联CNN的SAR图像舰船目标检测算法[J]. 控制与决策, 2019, 34(10): 2191–2197. doi: 10.13195/j.kzyjc.2018.0168

    LI Jianwei, QU Changwen, and PENG Shujuan. A ship detection method based on cascade CNN in SAR images[J]. Control and Decision, 2019, 34(10): 2191–2197. doi: 10.13195/j.kzyjc.2018.0168
    [12]
    李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004

    LI Guangshuai, SU Juan, and LI Yihong. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004
    [13]
    WANG Rui, SHAO Sihan, AN Mengyu, et al. Soft thresholding attention network for adaptive feature denoising in SAR ship detection[J]. IEEE Access, 2021, 9: 29090–29105. doi: 10.1109/ACCESS.2021.3059033
    [14]
    ZHANG Tianwen and ZHANG Xiaoling. High-speed ship detection in SAR images based on a grid convolutional neural network[J]. Remote Sensing, 2019, 11(10): 1206. doi: 10.3390/rs11101206
    [15]
    ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11(21): 2483. doi: 10.3390/rs11212483
    [16]
    ZHANG Tianwen and ZHANG Xiaoling. ShipDeNet-20: An only 20 convolution layers and <1-MB lightweight SAR ship detector[J]. IEEE Geoscience and Remote Sensing Letters, in press.
    [17]
    ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. HyperLi-Net: A hyper-light deep learning network for high-accurate and high-speed ship detection from synthetic aperture radar imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 123–153. doi: 10.1016/j.isprsjprs.2020.05.016
    [18]
    GHIASI G, LIN T Y, and LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 7029–7038. doi: 10.1109/CVPR.2019.00720.
    [19]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 936–944, doi: 10.1109/CVPR.2017.106.
    [20]
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
    [21]
    BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—Improving object detection with one line of code[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 5562–5570. doi: 10.1109/ICCV.2017.593.
    [22]
    HU Jie, LI Shen, GANG Sun, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [23]
    ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. LS-SSDD-v1.0: A deep learning dataset dedicated to small ship detection from large-scale sentinel-1 SAR images[J]. Remote Sensing, 2020, 12(18): 2997. doi: 10.3390/rs12182997
    [24]
    WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861
    [25]
    孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097

    SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
    [26]
    CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162, doi: 10.1109/CVPR.2018.00644.
    [27]
    LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768. doi: 10.1109/CVPR.2018.00913.
    [28]
    ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. Balance scene learning mechanism for offshore and inshore ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, in press.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2925) PDF downloads(373) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint