Volume 10 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
TAN Xiangcheng, AN Daoxiang, CHEN Leping, et al. A land bridge extraction method based on polarized circular synthetic aperture radar images[J]. Journal of Radars, 2021, 10(3): 402–415. doi: 10.12000/JR20117
Citation: TAN Xiangcheng, AN Daoxiang, CHEN Leping, et al. A land bridge extraction method based on polarized circular synthetic aperture radar images[J]. Journal of Radars, 2021, 10(3): 402–415. doi: 10.12000/JR20117

A Land Bridge Extraction Method Based on Polarized Circular Synthetic Aperture Radar Images

DOI: 10.12000/JR20117
Funds:  The Natural Science Foundation of Hunan Province (2020JJ5661), The National Natural Science Foundationof China (61571447), The Equipment Pre-Research Foundation (61404130304, 61404130311, 61404130309)
More Information
  • Corresponding author: AN Daoxiang, daoxiangan@nudt.edu.cn
  • Received Date: 2020-08-20
  • Rev Recd Date: 2020-10-29
  • Available Online: 2020-11-17
  • Publish Date: 2020-11-17
  • As important man-made targets, bridges have been a major focus of Synthetic Aperture Radar (SAR) image interpretation, and many researchers have developed methods for bridge detection. The core frameworks of these methods are analogical, a river is first extracted, and a water bridge is detected based on the positional relationship between the river and bridge. However, existing bridge detection methods relying on river extraction; cannot be utilized detect land bridges. This is because the background environment under a bridge is land, not river, which has different scattering characteristics and shape layouts. As such, the traditional method for extracting rivers is not suitable for extracting land background, and it is impossible to locate a bridge based on prior knowledge of its location of. To resolve this problem, in this study, we propose a land bridge detection method based on polarized Circular SAR (CSAR) images. In our proposed method, the Circular Polarization Entropy (CPE) of an observed scene is introduced to separate possible bridge targets from a land background (In our experiment, the average CPE of the bridge is 0.4018, and that of the land background is 0.7819; thus there is a clear difference between the bridge and background). False targets are removed based on the difference in the polarization entropy variance features of the bridges and other ground objects; and the size characteristics of the bridges. Finally, accurate extractions of land bridges are obtained based on the geometric characteristics of the bridges. Experimental results based on real airborne L-band polarized CSAR data verify the correctness of the theoretical analysis and effectiveness of the proposed method.

     

  • loading
  • [1]
    HAN Yu, ZHENG Hong, CAO Qiong, et al. An effective method for bridge detection from satellite imagery[C]. The 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 2007: 2753–2757.
    [2]
    LUO J, MING D, LIU W, et al. Extraction of bridges over water from IKONOS panchromatic data[J]. International Journal of Remote Sensing, 2007, 28(16): 3633–3648. doi: 10.1080/01431160601024226
    [3]
    赵冠雄, 沈汀. 高分辨率SAR图像桥梁自动提取算法[J]. 计算机工程与设计, 2014, 35(8): 2793–2797. doi: 10.3969/j.issn.1000-7024.2014.08.034

    ZHAO Guanxiong and SHEN Ting. Automatic bridge extraction algorithm from high-resolution SAR image[J]. Computer Engineering and Design, 2014, 35(8): 2793–2797. doi: 10.3969/j.issn.1000-7024.2014.08.034
    [4]
    ZHANG Xiongmei, SONG Jianshe, YI Zhaoxiang, et al. Extraction and recognition of bridges over water in high resolution SAR image[C]. 2011 MSEC International Conference on Multimedia, Software Engineering and Computing, Wuhan, China, 2011: 19–24.
    [5]
    刘春, 杨健, 徐丰, 等. 基于水域跟踪的极化SAR图像桥梁检测[J]. 清华大学学报: 自然科学版, 2017, 57(12): 1303–1309. doi: 10.16511/j.cnki.qhdxxb.2017.25.057

    LIU Chun, YANG Jian, XU Feng, et al. Bridge detection in polarimetric SAR images based on water area tracing[J]. Journal of Tsinghua University:Science and Technology, 2017, 57(12): 1303–1309. doi: 10.16511/j.cnki.qhdxxb.2017.25.057
    [6]
    张永梅, 孙静, 叶晨. 基于互补特征的桥梁识别方法[J]. 计算机应用与软件, 2014, 31(3): 151–155, 158. doi: 10.3969/j.issn.1000-386x.2014.03.040

    ZHANG Yongmei, SUN Jing, and YE Chen. A bridge recognition method based on complementary features[J]. Computer Applications and Software, 2014, 31(3): 151–155, 158. doi: 10.3969/j.issn.1000-386x.2014.03.040
    [7]
    熊伟, 钟娟娟, 曹兰英. 一种高分辨率SAR图像水上桥梁目标识别新方法[J]. 火力与指挥控制, 2014, 39(4): 133–136, 140. doi: 10.3969/j.issn.1002-0640.2014.04.033

    XIONG Wei, ZHONG Juanjuan, and CAO Lanying. A novel algorithm for bridge recognition over water in high resolution SAR image[J]. Fire Control &Command Control, 2014, 39(4): 133–136, 140. doi: 10.3969/j.issn.1002-0640.2014.04.033
    [8]
    安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221–242. doi: 10.12000/JR20026

    AN Daoxiang, CHEN Leping, FENG Dong, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221–242. doi: 10.12000/JR20026
    [9]
    王建峰, 林赟, 郭胜龙, 等. 圆迹SAR的建筑物全方位优化成像方法研究[J]. 雷达学报, 2015, 4(6): 698–707. doi: 10.12000/JR15069

    WANG Jianfeng, LIN Yun, GUO Shenglong, et al. Circular SAR optimization imaging method of buildings[J]. Journal of Radars, 2015, 4(6): 698–707. doi: 10.12000/JR15069
    [10]
    洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046

    HONG Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046
    [11]
    CHEN Leping, AN Daoxiang, and HUANG Xiaotao. Resolution analysis of circular synthetic aperture radar noncoherent imaging[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(1): 231–240. doi: 10.1109/TIM.2019.2890932
    [12]
    丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063

    DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063
    [13]
    杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–693. doi: 10.12000/JR19099

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–693. doi: 10.12000/JR19099
    [14]
    吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047

    WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
    [15]
    LUO Yuxiao, AN Daoxiang, WANG Wu, et al. Improved ROEWA SAR image edge detector based on curvilinear structures extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 631–635. doi: 10.1109/LGRS.2019.2926428
    [16]
    李洋, 王官云, 王彦平, 等. 多角度极化SAR图像散射特征分解及SVM分类[J]. 电波科学学报, 2019, 34(6): 771–777. doi: 10.13443/j.cjors.2019043002

    LI Yang, WANG Guanyun, WANG Yanping, et al. Scattering feature decomposition and SVM classification of multi-angle polarimetric SAR images[J]. Chinese Journal of Radio Science, 2019, 34(6): 771–777. doi: 10.13443/j.cjors.2019043002
    [17]
    CHEN Leping, AN Daoxiang, HUANG Xiaotao, et al. A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5545–5554.
    [18]
    XUE Feiteng, LIN Yun, HONG Wen, et al. Analysis of azimuthal variations using multi-aperture polarimetric entropy with circular SAR images[J]. Remote Sensing, 2018, 10(1): 123. doi: 10.3390/rs10010123
    [19]
    XUE Feiteng, LIN Yun, HONG Wen, et al. An improved h/α unsupervised classification method for circular PolSAR images[J]. IEEE Access, 2018, 6: 34296–34306. doi: 10.1109/ACCESS.2018.2838329
    [20]
    CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1782) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint