Zhou Baoliang, Zhou Dongming, Gao Hongwei, Yang Jie. Distributed Aperture Coherence-synthetic Radar Joint Antenna Gain Analysis[J]. Journal of Radars, 2017, 6(4): 332-339. doi: 10.12000/JR17055
Citation: Zhang Jingjing, Hong Wen, Yin Qiang. Robust Distributed-target-based Calibration Method for Polarimetric SAR Using Spherically Truncated Covariance Matrix[J]. Journal of Radars, 2016, 5(6): 701-710. doi: 10.12000/JR16138

Robust Distributed-target-based Calibration Method for Polarimetric SAR Using Spherically Truncated Covariance Matrix

DOI: 10.12000/JR16138
Funds:

The National Natural Science Foundation ofChina (61430118)

  • Received Date: 2016-12-02
  • Rev Recd Date: 2016-12-20
  • Publish Date: 2016-12-28
  • Conventional distributed-target-based polarimetric calibration algorithms estimate polarimetric distortions by assuming that the measured spatially averaged covariance matrix takes a specific form.However, when the underlying surface contains targets that do not satisfy the assumptions employed by those algorithms, the averaged covariance matrix may deviate from the desired form.As a result, poor estimates of distortion parameters may yield.It is known that spherically truncated covariance matrix is robust to outliers.Thus, we introduce it to the polarimetric SAR calibration routine.Experiment results on the airborne SAR data confirm that this method can effectively reduce the uncertainty of distortion estimates, hence improve the robustness of the calibration.

     

  • [1]
    van Zyl J J.Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(3):337-348.
    [2]
    Freeman A,van Zyl J J,Klein J D,et al..Calibration of Stokes and scattering matrix format polarimetric SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(3):531-539.
    [3]
    Klein J D.Calibration of complex polarimetric SAR imagery using backscatter correlations[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):183-194.
    [4]
    Quegan S.A unified algorithm for phase and cross-talk calibration of polarimetric data-theory and observations[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(1):89-99.
    [5]
    Ainsworth T L,Ferro-Famil L,and Lee J S.Orientation angle preserving a posteriori polarimetric SAR calibration[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(4):994-1003.
    [6]
    Zhang H,Lu W,Zhang B,et al..Improvement of polarimetric SAR calibration based on the ainsworth algorithm for Chinese airborne PolSAR data[J].IEEE Geoscience and Remote Sensing Letters,2013,10(4):898-902.
    [7]
    van Zyl J J.Synthetic Aperture Radar Polarimetry[M].John WileySons,2011,Ch.4.
    [8]
    Ulaby F T and Elachi C.Radar Polarimetry for Geoscience Applications[M].Norwood,MA:Artech House,Inc.,1990.
    [9]
    Kimura H,Mizuno T,Papathanassiou K P,et al..Improvement of polarimetric SAR calibration based on the Quegan algorithm[C].2004 IEEE International Geoscience and Remote Sensing Symposium,IGARSS'04,Anchorage,AK,USA,2004,1:187.
    [10]
    Palombi F,Toti S,and Filippin R.Numerical reconstruction of the covariance matrix of a spherically truncated multinormal distribution[J].ArXiv e-prints,2012.
    [11]
    Goodman N R.Statistical analysis based on a certain multivariate complex Gaussian distribution (An Introduction)[J].Annals of Mathematics and Statistics,1963:152-177.
    [12]
    van Zyl J J.Application of Cloude's target decomposition theorem to polarimetric imaging radar data[C].Proceedings of SPIE Radar Polarimetry,San Diego,CA,USA,1992.
    [13]
    Zhang J J and Hong W.Bootstrap resampling for distributed-target-based polarimetric calibration and validation without ground truth[C].Presented at the CEOS SAR CAL/VAL Workshop,Tokyo,Japan,2016.
    [14]
    Xing S Q,Dai D H,Liu J,et al..Comment on orientation angle preserving A Posteriori polarimetric SAR calibration[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(6):2417-2419.
    [15]
    Papoulis A.Probability,Random Variables,and Stochastic processes[M].in Physics Today,2002,Ch.7.
  • Relative Articles

    [1]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [2]CHEN Yifan, LIU Jiangang, JIA Yong, GUO Shisheng, CUI Guolong. High-resolution Imaging Method for Through-the-wall Radar Based on Transfer Learning with Simulation Samples[J]. Journal of Radars, 2024, 13(4): 807-821. doi: 10.12000/JR24049
    [3]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [4]WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011
    [5]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [6]WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204
    [7]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [8]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [9]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [10]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [11]TIAN Biao, LIU Yang, HU Pengjiang, WU Wenzhen, XU Shiyou, CHEN Zengping. Review of High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(5): 765-802. doi: 10.12000/JR20060
    [12]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [13]WANG Chao, WANG Yanfei, LIU Chang, LIU Bidan. A New Approach to Range Cell Migration Correction for Ground Moving Targets in High-resolution SAR System Based on Parameter Estimation[J]. Journal of Radars, 2019, 8(1): 64-72. doi: 10.12000/JR18054
    [14]LONG Teng, DING Zegang, XIAO Feng, WANG Yan, LI Zhe. Spaceborne High-resolution Stepped-frequency SAR Imaging Technology[J]. Journal of Radars, 2019, 8(6): 782-792. doi: 10.12000/JR19076
    [15]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [16]Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. Journal of Radars, 2016, 5(5): 548-557. doi: 10.12000/JR16014
    [17]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [18]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [19]Zheng Jian-cheng, Wang Dang-wei, Ma Xiao-yan, Xuan Ze-ping, Feng Xiao-bing. Study on Spin-based Imaging of High-speed Warhead[J]. Journal of Radars, 2013, 2(3): 300-308. doi: 10.3724/SP.J.1300.2013.13070
    [20]Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • Cited by

    Periodical cited type(5)

    1. 王元昊,王宏强,刘兴华,曾旸,杨琪. 分布式相参雷达相参效率及相参景深研究. 系统工程与电子技术. 2024(05): 1573-1582 .
    2. 周宝亮. 分布式相参雷达LFM宽带去斜参数估计方法. 电子与信息学报. 2020(07): 1566-1572 .
    3. 周宝亮,周东明,高红卫,鲁耀兵. 分布式孔径相参合成雷达技术试验验证与分析. 太赫兹科学与电子信息学报. 2019(03): 413-417+429 .
    4. 周宝亮,高红卫,文树梁,鲁耀兵. 分布式相参雷达基线选择与标定误差分析. 系统工程与电子技术. 2018(11): 2438-2443 .
    5. 周宝亮,雷子健,周东明,高红卫. 分布式孔径相参雷达预警探测技术. 信号处理. 2018(11): 1330-1338 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.9 %FULLTEXT: 19.9 %META: 71.7 %META: 71.7 %PDF: 8.4 %PDF: 8.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.0 %其他: 14.0 %其他: 0.6 %其他: 0.6 %Bryn Mawr: 0.2 %Bryn Mawr: 0.2 %China: 0.8 %China: 0.8 %India: 0.0 %India: 0.0 %Seattle: 0.1 %Seattle: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United Kingdom: 0.1 %United Kingdom: 0.1 %[]: 0.5 %[]: 0.5 %上海: 0.5 %上海: 0.5 %东营: 0.0 %东营: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兰辛: 0.2 %兰辛: 0.2 %内江: 0.1 %内江: 0.1 %包头: 0.0 %包头: 0.0 %北京: 10.3 %北京: 10.3 %北海: 0.1 %北海: 0.1 %南京: 0.9 %南京: 0.9 %南充: 0.1 %南充: 0.1 %南宁: 0.0 %南宁: 0.0 %南昌: 0.1 %南昌: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %天津: 0.5 %天津: 0.5 %太原: 0.1 %太原: 0.1 %孝感: 0.0 %孝感: 0.0 %安康: 0.0 %安康: 0.0 %宜春: 0.3 %宜春: 0.3 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.0 %宿迁: 0.0 %广州: 0.7 %广州: 0.7 %广州市: 0.0 %广州市: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.1 %张家口市: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.5 %成都: 0.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 2.2 %杭州: 2.2 %格兰特县: 0.0 %格兰特县: 0.0 %武汉: 0.8 %武汉: 0.8 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %浙江: 0.0 %浙江: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.3 %深圳: 0.3 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %玉林: 0.0 %玉林: 0.0 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %芒廷维尤: 13.4 %芒廷维尤: 13.4 %芝加哥: 0.4 %芝加哥: 0.4 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西双版纳: 0.0 %西双版纳: 0.0 %西宁: 44.4 %西宁: 44.4 %西安: 0.9 %西安: 0.9 %贵港: 0.2 %贵港: 0.2 %运城: 0.4 %运城: 0.4 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %金华: 0.0 %金华: 0.0 %长沙: 0.4 %长沙: 0.4 %阳泉: 0.0 %阳泉: 0.0 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %其他其他Bryn MawrChinaIndiaSeattleTaiwan, ChinaUnited Kingdom[]上海东营丹东伊利诺伊州佛山保定兰辛内江包头北京北海南京南充南宁南昌台北台州呼和浩特哈尔滨天津太原孝感安康宜春宝鸡宣城宿迁广州广州市开封张家口张家口市惠州成都成都市新都区拉贾斯坦邦新乡无锡昆明杭州格兰特县武汉沈阳济南浙江淮南深圳深圳市温州湖州湘潭漯河烟台焦作玉林石家庄石家庄市纽约绍兴芒廷维尤芝加哥衡阳衢州西双版纳西宁西安贵港运城邯郸郑州重庆金华长沙阳泉香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3002) PDF downloads(894) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint