Volume 8 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
LONG Teng, DING Zegang, XIAO Feng, et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8(6): 782–792. doi: 10.12000/JR19076
Citation: LONG Teng, DING Zegang, XIAO Feng, et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8(6): 782–792. doi: 10.12000/JR19076

Spaceborne High-resolution Stepped-frequency SAR Imaging Technology

doi: 10.12000/JR19076
Funds:  The National Science Foundation for Distinguished Young Scholars (61625103), The National Natural Science Foundation of China (11833001)
More Information
  • Corresponding author: LONG Teng, longteng@bit.edu.cn; DING Zegang, z.ding@bit.edu.cn
  • Received Date: 2019-08-30
  • Rev Recd Date: 2019-12-01
  • Available Online: 2019-12-30
  • Publish Date: 2019-12-01
  • Spaceborne Synthetic Aperture Radar (SAR) is a type of microwave imaging radar with 2D high resolution. This technological device achieves range high resolution by transmitting wideband signals and azimuth high resolution through the synthetic aperture approach. With the increasing demand for high-resolution imaging, the resolution of spaceborne SAR has moved toward the decimeter level. On the one hand, limited by the present hardware technology, achieving wideband signal transmission through stepped-frequency technology is necessary. In this case, we need to study high-precision bandwidth synthesis technology. The influence of slant range error and amplitude and phase error between sub-bands should be considered. On the other hand, due to limited beamwidth, the system needs to work in sliding spot mode to achieve a long synthetic aperture. In this case, we need to study the problem of imaging parameter variance caused by curved orbit, “Stop–go” error, and the influence of ionospheric and tropospheric transmission errors on imaging. To solve these problems, this paper introduces the principle of stepped-frequency signal design and bandwidth synthesis technology in detail. A time-domain algorithm and non-ideal factor compensation method are proposed for spaceborne high-resolution stepped-frequency SAR imaging. Finally, simulation verification and performance analysis of the imaging algorithm are conducted.

     

  • loading
  • [1]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood: Artech House, 2005: 1–9.
    [2]
    张澄波. 综合孔径雷达[M]. 北京: 科学出版社, 1989: 1–5.

    ZHANG Chengbo. Synthetic Aperture Radar[M]. Beijing: Science Press, 1989: 1–5.
    [3]
    袁孝康. 星载合成孔径雷达导论[M]. 北京: 国防工业出版社, 2003: 1–5.

    YUAN Xiaokang. Introduce to the Spaceborne Synthetic Aperture Radar[M]. Beijing: National Defend Industry Press, 2003: 1–5.
    [4]
    WILEY C A. Synthetic aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3): 440–443. doi: 10.1109/TAES.1985.310578
    [5]
    TSUNODA S I, PACE F, STENCE J, et al. Lynx: A high-resolution synthetic aperture radar[C]. SPIE 3704, Radar Sensor Technology IV, Orlando, USA, 1999: 1–4. doi: 10.1117/12.354602.
    [6]
    ENDER J H G and BRENNER A R. PAMIR-a wideband phased array SAR/MTI system[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 165–172. doi: 10.1049/ip-rsn:20030445
    [7]
    WERNINGHAUS R and BUCKREUSS S. The TerraSAR-X mission and system design[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 606–614. doi: 10.1109/tgrs.2009.2031062
    [8]
    邓云凯, 陈倩, 祁海明, 等. 一种基于频域子带合成的多发多收高分辨率SAR成像算法[J]. 电子与信息学报, 2011, 33(5): 1082–1087. doi: 10.3724/SP.J.1146.2010.01067

    DENG Yunkai, CHEN Qian, QI Haiming, et al. A high-resolution imaging algorithm for MIMO SAR based on the sub-band synthesis in frequency domain[J]. Journal of Electronics &Information Technology, 2011, 33(5): 1082–1087. doi: 10.3724/SP.J.1146.2010.01067
    [9]
    LORD R T and INGGS M R. High resolution SAR processing using stepped-frequencies[C]. 1997 IEEE International Geoscience and Remote Sensing Symposium, Remote Sensing - A Scientific Vision for Sustainable Development, Singapore, 1997: 490–492. doi: 10.1109/IGARSS.1997.615924.
    [10]
    WU Yuan, SUN Guangcai, YANG Chun, et al. Processing of very high resolution spaceborne sliding spotlight SAR data using velocity scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1505–1518. doi: 10.1109/TGRS.2015.2481923
    [11]
    PRATS-IRAOLA P, SCHEIBER R, RODRIGUEZ-CASSOLA M, et al. On the processing of very high resolution spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6003–6016. doi: 10.1109/TGRS.2013.2294353
    [12]
    BELCHER D P. Theoretical limits on SAR imposed by the ionosphere[J]. IET Radar, Sonar & Navigation, 2008, 2(6): 435–448. doi: 10.1049/iet-rsn:20070188
    [13]
    王沛. 高分辨率星载合成孔径雷达关键技术研究与验证[D]. [博士论文], 中国科学院大学, 2018: 47–49.

    WANG Pei. Study on key technology and verification of spaceborne high resolution synthetic aperture radar[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2018: 47–49.
    [14]
    VILLANO M, KRIEGER G, and MOREIRA A. Staggered-SAR for high-resolution wide-swath imaging[C]. 2012 IET International Conference on Radar Systems, Glasgow, UK, 2012: 1–6. doi: 10.1049/cp.2012.1600.
    [15]
    秦显平. 星载GPS低轨卫星定轨理论及方法研究[D]. [博士论文], 解放军信息工程大学, 2009: 1–3.

    QIN Xianping. Research on precision orbit determination theory and method of low earth orbiter based on GPS technique[D]. [Ph.D. dissertation], The PLA Information Engineering University, 2009: 1–3.
    [16]
    ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
    [17]
    DING Zegang, GUO Yansu, GAO Wenbin, et al. A range grating lobes suppression method for stepped-frequency SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12): 5677–5687. doi: 10.1109/JSTARS.2016.2593711
    [18]
    DING Zegang, GAO Wenbin, LIU Jingyun, et al. A novel range grating lobe suppression method based on the stepped-frequency SAR image[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 606–610. doi: 10.1109/LGRS.2014.2352676
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3271) PDF downloads(393) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint