Volume 8 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
YANG Lichao, GAO Yuexin, XING Mengdao, et al. High resolution microwave photonics radar real-time imaging based on generalized keystone and frequency scaling[J]. Journal of Radars, 2019, 8(2): 215–223. doi: 10.12000/JR18120
Citation: YANG Lichao, GAO Yuexin, XING Mengdao, et al. High resolution microwave photonics radar real-time imaging based on generalized keystone and frequency scaling[J]. Journal of Radars, 2019, 8(2): 215–223. doi: 10.12000/JR18120

High Resolution Microwave Photonics Radar Real-time Imaging Based on Generalized Keystone and Frequency Scaling

doi: 10.12000/JR18120
Funds:  National Key R&D Program of China (2017YFC1405600), The Natural Science Foundation of Shanghai (17ZR1428700)
More Information
  • Corresponding author: YANG Lichao, ylc9310@163.com
  • Received Date: 2018-12-25
  • Rev Recd Date: 2019-03-26
  • Available Online: 2019-04-15
  • Publish Date: 2019-04-01
  • Microwave photonic radars can transmit large bandwidth and high carrier frequency signals, which makes two-dimensional high-resolution Inverse Synthetic Aperture Radar (ISAR) imaging possible. It is important to study the corresponding real-time imaging algorithms. However, the high range resolution and high carrier frequency of the signal make the space curvature of the distance bend non-negligible. This is the reason for the poor imaging performance of the traditional Doppler real-time imaging algorithm. In addition, the computationally intensive beam domain imaging algorithm is not suitable for microwave photonic radar signals of large data volume. Therefore, a high-efficiency microwave photonic ISAR high-resolution real-time imaging algorithm is proposed in this paper. Firstly, this algorithm uses the Generalized Keystone Transform (GKT) to extract the phase of the special display point. Next, it inverts the target lateral velocity from phase modulation frequency. Finally, the result of velocity estimation and Frequency Scaling (FS) are used to correct the distance space-bending and conduct matched filtering imaging in azimuth. The simulation results and the measured data have been shown to verify the effectiveness of the proposed algorithm.

     

  • loading
  • [1]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 6–70.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Techniques[M]. Beijing: Publishing House of Electronics Industry, 2005: 6–70.
    [2]
    潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004

    PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004
    [3]
    PÉREZ D, GASULLA I, CAPMANY J, et al. Integrated microwave photonics: The quest for the universal programmable processor[C]. 2016 IEEE Photonics Society Summer Topical Meeting Series, Newport Beach, CA, USA, 2016: 144–145. doi: 10.1109/PHOSST.2016.7548751.
    [4]
    WU Tingwei, ZHANG Chongfu, ZHOU Heng, et al. Photonic microwave waveforms generation based on frequency and time-domain synthesis[J]. IEEE Access, 2018, 6: 34372–34379. doi: 10.1109/ACCESS.2018.2842250
    [5]
    GRODENSKY D, KRAVITZ D, and ZADOK A. Ultra-wideband microwave-photonic noise radar based on optical waveform generation[J]. IEEE Photonics Technology Letters, 2012, 24(10): 839–841. doi: 10.1109/LPT.2012.2188889
    [6]
    XIAO Xuedi, LI Shangyuan, CHEN Boyu, et al. A microwave photonics-based inverse synthetic aperture radar system[C]. 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: 1–2.
    [7]
    GUO Qingshui, ZHANG Fangzheng, WANG Ziqian, et al. High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar[C]. 2017 International Topical Meeting on Microwave Photonics, Beijing, China, 2017: 1–3.
    [8]
    CHEN C C and ANDREWS H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873
    [9]
    ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562
    [10]
    徐刚, 杨磊, 张磊, 等. 一种加权最小熵的ISAR自聚焦算法[J]. 电子与信息学报, 2011, 33(8): 1809–1815. doi: 10.3724/SP.J.1146.2010.01153

    XU Gang, YANG Lei, ZHANG Lei, et al. Weighted minimum entropy autofocus algorithm for ISAR imaging[J]. Journal of Electronics &Information Technology, 2011, 33(8): 1809–1815. doi: 10.3724/SP.J.1146.2010.01153
    [11]
    符吉祥, 孙光才, 邢孟道. 一种大转角ISAR两维自聚焦平动补偿方法[J]. 电子与信息学报, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303

    FU Jixiang, SUN Guangcai, and XING Mengdao. A two dimensional autofocus translation compensation method for wide-angle ISAR imaging[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303
    [12]
    HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized Hough-HAF transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 320–335. doi: 10.1109/TGRS.2016.2606436
    [13]
    LI Xiaolong, CUI Guolong, YI Wei, et al. Range migration correction for maneuvering target based on generalized keystone transform[C]. 2015 IEEE Radar Conference, Arlington, VA, USA, 2015, 0095–0099. doi: 10.1109/RADAR.2015.7130977.
    [14]
    MITTERMAYER J, MOREIRA A, and LOFFELD O. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2198–2214. doi: 10.1109/36.789617
    [15]
    ZHU Daiyin, SHEN Mingwei, and ZHU Zhaoda. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1579–1588. doi: 10.1109/TGRS.2008.916468
    [16]
    许志伟, 张磊, 邢孟道. 基于特征配准的ISAR图像方位定标方法[J]. 电子与信息学报, 2014, 36(9): 2173–2179. doi: 10.3724/SP.J.1146.2013.01590

    XU Zhiwei, ZHANG Lei, and XING Mengdao. A novel cross-range scaling algorithm for ISAR images based on feature registration[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2173–2179. doi: 10.3724/SP.J.1146.2013.01590
    [17]
    LI Y, WU R, XING M, et al. Inverse synthetic aperture radar imaging of ship target with complex motion[J]. IET Radar, Sonar & Navigation, 2008, 2(6): 395–403. doi: 10.1049/iet-rsn:20070101
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2579) PDF downloads(283) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint