Citation: | |
[1] |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 6–70.
BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Techniques[M]. Beijing: Publishing House of Electronics Industry, 2005: 6–70.
|
[2] |
潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004
PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004
|
[3] |
PÉREZ D, GASULLA I, CAPMANY J, et al. Integrated microwave photonics: The quest for the universal programmable processor[C]. 2016 IEEE Photonics Society Summer Topical Meeting Series, Newport Beach, CA, USA, 2016: 144–145. doi: 10.1109/PHOSST.2016.7548751.
|
[4] |
WU Tingwei, ZHANG Chongfu, ZHOU Heng, et al. Photonic microwave waveforms generation based on frequency and time-domain synthesis[J]. IEEE Access, 2018, 6: 34372–34379. doi: 10.1109/ACCESS.2018.2842250
|
[5] |
GRODENSKY D, KRAVITZ D, and ZADOK A. Ultra-wideband microwave-photonic noise radar based on optical waveform generation[J]. IEEE Photonics Technology Letters, 2012, 24(10): 839–841. doi: 10.1109/LPT.2012.2188889
|
[6] |
XIAO Xuedi, LI Shangyuan, CHEN Boyu, et al. A microwave photonics-based inverse synthetic aperture radar system[C]. 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: 1–2.
|
[7] |
GUO Qingshui, ZHANG Fangzheng, WANG Ziqian, et al. High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar[C]. 2017 International Topical Meeting on Microwave Photonics, Beijing, China, 2017: 1–3.
|
[8] |
CHEN C C and ANDREWS H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873
|
[9] |
ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562
|
[10] |
徐刚, 杨磊, 张磊, 等. 一种加权最小熵的ISAR自聚焦算法[J]. 电子与信息学报, 2011, 33(8): 1809–1815. doi: 10.3724/SP.J.1146.2010.01153
XU Gang, YANG Lei, ZHANG Lei, et al. Weighted minimum entropy autofocus algorithm for ISAR imaging[J]. Journal of Electronics &Information Technology, 2011, 33(8): 1809–1815. doi: 10.3724/SP.J.1146.2010.01153
|
[11] |
符吉祥, 孙光才, 邢孟道. 一种大转角ISAR两维自聚焦平动补偿方法[J]. 电子与信息学报, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303
FU Jixiang, SUN Guangcai, and XING Mengdao. A two dimensional autofocus translation compensation method for wide-angle ISAR imaging[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303
|
[12] |
HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized Hough-HAF transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 320–335. doi: 10.1109/TGRS.2016.2606436
|
[13] |
LI Xiaolong, CUI Guolong, YI Wei, et al. Range migration correction for maneuvering target based on generalized keystone transform[C]. 2015 IEEE Radar Conference, Arlington, VA, USA, 2015, 0095–0099. doi: 10.1109/RADAR.2015.7130977.
|
[14] |
MITTERMAYER J, MOREIRA A, and LOFFELD O. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2198–2214. doi: 10.1109/36.789617
|
[15] |
ZHU Daiyin, SHEN Mingwei, and ZHU Zhaoda. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1579–1588. doi: 10.1109/TGRS.2008.916468
|
[16] |
许志伟, 张磊, 邢孟道. 基于特征配准的ISAR图像方位定标方法[J]. 电子与信息学报, 2014, 36(9): 2173–2179. doi: 10.3724/SP.J.1146.2013.01590
XU Zhiwei, ZHANG Lei, and XING Mengdao. A novel cross-range scaling algorithm for ISAR images based on feature registration[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2173–2179. doi: 10.3724/SP.J.1146.2013.01590
|
[17] |
LI Y, WU R, XING M, et al. Inverse synthetic aperture radar imaging of ship target with complex motion[J]. IET Radar, Sonar & Navigation, 2008, 2(6): 395–403. doi: 10.1049/iet-rsn:20070101
|
[1] | LIU Deshun, XIA Deping, CHEN Lu, MA Yanfeng. Joint Design of LPI Transmit Waveform and Receive Beamforming Based on Neural Networks for FDA-MIMO[J]. Journal of Radars, 2024, 13(6): 1239-1251. doi: 10.12000/JR24140 |
[2] | TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033 |
[3] | LI Zhengjie, XIE Junwei, ZHANG Haowei, WEN Quan, LIU Bin. A Fast Power Allocation Algorithm in a Collocated MIMO Radar under Low Interception Backgrounds[J]. Journal of Radars, 2023, 12(3): 602-615. doi: 10.12000/JR22203 |
[4] | WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072 |
[5] | YAO Yu, LI Zeqing, FAN Wen, DU Xiaolin, WU Lenan. Spectrally Compatible Waveform Design for MIMO Radar Based on ABSUM Method[J]. Journal of Radars, 2022, 11(4): 543-556. doi: 10.12000/JR22138 |
[6] | FAN Wen, YU Baoguo, CHEN Jing, ZHANG Hang, LI Chunze. Joint Waveform Optimization and Antenna Position Selection for MIMO Radar Beam Scanning[J]. Journal of Radars, 2022, 11(4): 530-542. doi: 10.12000/JR22135 |
[7] | ZHENG Guimei, SONG Yuwei, HU Guoping, LI Binbin, ZHANG Dong. Height Measurement for Meter-wave MIMO Radar Based on Block Orthogonal Matching Pursuit Preprocessing[J]. Journal of Radars, 2020, 9(5): 908-915. doi: 10.12000/JR20042 |
[8] | ZHANG Jinsong, XING Mengdao, SUN Guangcai. A Water Segmentation Algorithm for SAR Image Based on Dense Depthwise Separable Convolution[J]. Journal of Radars, 2019, 8(3): 400-412. doi: 10.12000/JR19008 |
[9] | ZHAO Xianbin, YAN Wei, AI Weihua, LU Wen, MA Shuo. Research on Calculation Method of Doppler Centroid Shift from Airborne Synthetic Aperture Radar for Ocean Feature Retrieval[J]. Journal of Radars, 2019, 8(3): 391-399. doi: 10.12000/JR19020 |
[10] | Wang Jie, Ding Chibiao, Liang Xingdong, Chen Longyong, Qi Zhimei. Research Outline of Airborne MIMO-SAR System with Same Time-frequency Coverage[J]. Journal of Radars, 2018, 7(2): 220-234. doi: 10.12000/JR17046 |
[11] | Wang Pei, Sun Huifeng, Yu Weidong. A Novel Wireless Internal Calibration Method of Spaceborne SAR[J]. Journal of Radars, 2018, 7(4): 425-436. doi: 10.12000/JR18005 |
[12] | Xu Zhen, Wang Robert, Li Ning, Zhang Heng, Zhang Lei. A Novel Approach to Change Detection in SAR Images with CNN Classification[J]. Journal of Radars, 2017, 6(5): 483-491. doi: 10.12000/JR17075 |
[13] | Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065 |
[14] | Wang Fulai, Pang Chen, Li Yongzhen, Wang Xuesong. Orthogonal Polyphase Coded Waveform Design Method for Simultaneous Fully Polarimetric Radar[J]. Journal of Radars, 2017, 6(4): 340-348. doi: 10.12000/JR16150 |
[15] | Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046 |
[16] | Jiang Hai, Song Hong-jun. Improved MISO-SAR System Based on BiDirectional Imaging[J]. Journal of Radars, 2015, 4(5): 571-581. doi: 10.12000/JR15022 |
[17] | Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008 |
[18] | Gao Yang, Yu Wei-dong, Feng Jin, Zheng Shi-chao, Yang Liang. A SAR Back Projection Autofocusing Algorithm Based on Legendre Approximation[J]. Journal of Radars, 2014, 3(2): 176-182. doi: 10.3724/SP.J.1300.2014.14011 |
[19] | Meng Da-di, Hu Yu-xin, Ding Chi-biao. An Efficient Algorithm to Processing SAR Data on GPU[J]. Journal of Radars, 2013, 2(2): 210-217. doi: 10.3724/SP.J.1300.2013.20098 |
[20] | Li Fang-fang, Zhan Yi, Hu Dong-hui, Ding Chi-biao. A Fast Method for InSAR Phase Unwrapping Based on Quality Guide[J]. Journal of Radars, 2012, 1(2): 196-202. doi: 10.3724/SP.J.1300.2012.20023 |
1. | 白杨,殷红成,黄培康,刘芳. 基于宽带极化纯度估计的极化测量定标修正. 系统工程与电子技术. 2024(02): 428-436 . ![]() | |
2. | 李泽榕,杨勇. 基于X波段无人机暗室测量数据的雷达探测性能分析. 信息对抗技术. 2023(06): 61-70 . ![]() | |
3. | 李郝亮,陈思伟. 极化测量误差对人造目标散射解译性能的影响研究. 现代雷达. 2022(01): 1-8 . ![]() | |
4. | 白杨,侯鑫,刘芳,殷红成. 基于宽带相位修正的散射矩阵变极化基测量. 系统工程与电子技术. 2022(02): 506-511 . ![]() | |
5. | 杨勇,王雪松,张斌. 基于时频检测与极化匹配的雷达无人机检测方法. 电子与信息学报. 2021(03): 509-515 . ![]() | |
6. | 张斌,杨勇,逯旺旺,王雪松,肖顺平. Ku波段固定翼无人机全极化RCS统计特性研究. 现代雷达. 2020(06): 41-47 . ![]() | |
7. | 王雪松,杨勇. 海杂波与目标极化特性研究进展. 电波科学学报. 2019(06): 665-675 . ![]() | |
8. | 章鹏飞,李刚,霍超颖,殷红成. 基于双雷达微动特征融合的无人机分类识别. 雷达学报. 2018(05): 557-564 . ![]() |