Hao Tianduo, Cui Chen, Gong Yang, Sun Congyi. Waveform Design for Cognitive Radar Under Low PAR Constraints by Convex Optimization[J]. Journal of Radars, 2018, 7(4): 498-506. doi: 10.12000/JR18002
Citation: LIU Ning, ZHAO Bo, and HUANG Lei. Anti-deceptive jamming methods based on single-channel synthetic aperture radar[J]. Journal of Radars, 2019, 8(1): 73–81. doi: 10.12000/JR18072

Anti-deceptive Jamming Methods Based on Single-channel Synthetic Aperture Radar

DOI: 10.12000/JR18072
Funds:  The National Natural Science Foundation of China (61801297, U1713217, U1501253, 61501485, 61601300, 61601304), The China Postdoctoral Science Foundation (2015M582413), The Natural Science Foundation of Guangdong Province, China (2015A030311030), The Foundation of Shenzhen City (ZDSYS201507081625213, JCYJ20160520165659418, JCYJ20170302142545828, JCYJ20150324140036835)
More Information
  • Corresponding author: ZHAO Bo, b_zhao@126.com
  • Received Date: 2018-09-03
  • Rev Recd Date: 2018-10-19
  • Available Online: 2018-11-27
  • Publish Date: 2019-02-28
  • This paper discusses anti-deceptive jamming methods based on single-channel and fixed waveform assumptions for synthetic aperture radar imaging. Using the essential defects of the deceptive-jamming theory, the information acquisition ability of the Synthetic Aperture Radar (SAR) system in a complicated electromagnetic environment is effectively improved with limited degrees of freedom in spatial and time domains. Geometric and signal models of SAR imaging and deceptive jamming are established and the different characteristics between them are analyzed according to their working mechanisms. Upon extracting their characteristic differences via different imaging processes and enhancing them based on statistical information, the degree of separation between the true and false targets is increased. Therefore, identification on the deceptive jamming is realized. Moreover, an approach for the dynamic synthetic aperture is used to formulate an optimization problem for the reconstruction of true and false targets. By solving such a problem, the true and false targets are separately reconstructed with super-resolution, achieving the goal of deceptive-jamming suppression. The effectiveness of the proposed methods is verified by simulations.

     

  • [1]
    LIU Y C, WANG W, PAN X Y, et al. Inverse omega-K algorithm for the electromagnetic deception of synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3037–3049. doi: 10.1109/JSTARS.2016.2543961
    [2]
    ZHAO B, ZHOU F, SHI X R, et al. Multiple targets deception jamming against ISAR using electromagnetic properties[J]. IEEE Sensors Journal, 2015, 15(4): 2031–2038. doi: 10.1109/JSEN.2014.2368985
    [3]
    SHI X R, ZHOU F, ZHAO B, et al. Deception jamming method based on micro-Doppler effect for vehicle target[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1071–1079. doi: 10.1049/iet-rsn.2015.0371
    [4]
    ZHAO B, ZHOU F, and BAO Z. Deception jamming for squint SAR based on multiple receivers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3988–3998. doi: 10.1109/JSTARS.2014.2322612
    [5]
    ZHAO B, HUANG L, ZHOU F, et al. Performance improvement of deception jamming against SAR based on minimum condition number[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(3): 1039–1055. doi: 10.1109/JSTARS.2016.2614957
    [6]
    徐少坤. SAR欺骗式干扰技术研究[D]. [硕士论文], 国防科学技术大学, 2007.

    XU Shao-kun. Research on SAR deception jamming methods[D]. [Master dissertation], National University of Defense Technology, 2007.
    [7]
    陈志勇, 付耀文, 黎湘. 实时SAR欺骗干扰系统研究[J]. 信号处理, 2009, 25(8A): 546–548.

    CHEN Zhi-yong, FU Yao-wen, and LI Xiang. A study on the realtime deceptive jamming system to SAR[J]. Signal Processing, 2009, 25(8A): 546–548.
    [8]
    汪连栋, 柏仲干, 王国良. 考虑失配的SAR欺骗干扰分析与仿真[J]. 航天电子对抗, 2006, 22(4): 30–32. doi: 10.3969/j.issn.1673-2421.2006.04.010

    WANG Lian-dong, BAI Zhong-gan, and WANG guo-liang. Simulation and analysis of deception jamming effects against SAR considering mis-matched filter effection[J]. Aerospace Electronic Warfare, 2006, 22(4): 30–32. doi: 10.3969/j.issn.1673-2421.2006.04.010
    [9]
    LI C and ZHU D Y. The detection of deception jamming against SAR based on dual-aperture antenna cross-track interferometry[C]. Proceedings of 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1109/ICR.2006.343274.
    [10]
    QIN J M, YANG J, HE Z H, et al. Analysis of target loss due to suppressing SAR jamming using dual-channel cancellation[C]. Proceedings of 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1109/ICR.2006.343324.
    [11]
    张双喜, 孙光才, 刘艳阳, 等. 基于四通道SAR欺骗式干扰抑制算法[J]. 现代雷达, 2011, 33(2): 22–26, 30. doi: 10.3969/j.issn.1004-7859.2011.02.006

    ZHANG Shuang-xi, SUN Guang-cai, LIU Yan-yang, et al. Deception interference supression algorithm based on four-channel for SAR[J]. Modern Radar, 2011, 33(2): 22–26, 30. doi: 10.3969/j.issn.1004-7859.2011.02.006
    [12]
    SUN B Z and LI J W. A new interference elimination method for multi-satellite SAR system[C]. Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 2008: IV-1316–IV-1319. doi: 10.1109/IGARSS.2008.4779973.
    [13]
    XIONG W, ZHANG G, WEN F Q, et al. Trilinear decomposition-based spatial-polarisational filter method for deception jamming suppression of radar[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 765–773. doi: 10.1049/iet-rsn.2015.0348
    [14]
    WANG B, GUI G L, ZHANG S, et al. Deceptive jamming suppression based on coherent cancelling in multistatic radar system[C]. Proceedings of 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2016: 1–5. doi: 10.1109/RADAR.2016.7485304.
    [15]
    SOUMEKH M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 191–205. doi: 10.1109/TAES.2006.1603414
    [16]
    赵宗锋. 基于信号波形设计的SAR抗干扰技术研究[D]. [硕士论文], 国防科学技术大学, 2007.

    ZHAO Zong-feng. SAR anti-jamming based on waveform design[D]. [Master dissertation], National University of Defense Technology, 2007.
    [17]
    李江源, 王建国. 利用复杂调制LFM信号的SAR抗欺骗干扰技术[J]. 电子与信息学报, 2008, 30(9): 2111–2114. doi: 10.3724/SP.J.1146.2007.00231

    LI Jiang-yuan and WANG Jian-guo. The anti-jamming technology for SAR cheat jamming using complex modulated LFM signal[J]. Journal of Electronics &Information Technology, 2008, 30(9): 2111–2114. doi: 10.3724/SP.J.1146.2007.00231
    [18]
    冯祥芝, 许小剑. 随机线性调频斜率SAR抗欺骗干扰方法研究[J]. 系统工程与电子技术, 2009, 31(1): 69–73. doi: 10.3321/j.issn:1001-506X.2009.01.018

    FENG Xiang-zhi and XU Xiao-jian. Study of countermeasures to deceptive jamming using random linear modulation frequency ratio SAR[J]. Systems Engineering and Electronics, 2009, 31(1): 69–73. doi: 10.3321/j.issn:1001-506X.2009.01.018
    [19]
    LI W, LU X Q, DA X Y, et al. Anti-jamming method based on orthogonal codes jittered and random initial phase for SAR[C]. Proceedings of 2007 IET International Conference on Radar Systems, Edinburgh, U.K., 2007: 1–5. doi: 10.1049/cp: 20070651.
    [20]
    FENG Q Q, XU H P, WU Z F, et al. Deceptive jamming suppression for SAR based on time-varying initial phase[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 4996–4999. doi: 10.1109/IGARSS.2016.7730303.
    [21]
    HOSSAIN M A, ELSHAFIEY I, ALKANHAL M A, et al. Anti-jamming capabilities of UWB-OFDM SAR[C]. Proceedings of the 8th European Radar Conference, Manchester, U.K., 2011: 313–316.
    [22]
    罗双才, 唐斌. 一种基于盲分离的欺骗干扰抑制算法[J]. 电子与信息学报, 2011, 33(12): 2801–2806. doi: 10.3724/SP.J.1146.2011.00380

    LUO Shuang-cai and TANG Bin. An algorithm of deception jamming suppression based on blind signal separation[J]. Journal of Electronics &Information Technology, 2011, 33(12): 2801–2806. doi: 10.3724/SP.J.1146.2011.00380
    [23]
    ZHAO B, HUANG L, HE C L, et al. SAR deception jamming identification via differential feature enhancement[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059174.
    [24]
    ZHAO B, HUANG L, and ZHANG J H. Single channel SAR deception jamming suppression via dynamic aperture processing[J]. IEEE Sensors Journal, 2017, 17(13): 4225–4230. doi: 10.1109/JSEN.2017.2695001
    [25]
    ZHAO B, HUANG L, LI J, et al. Target reconstruction from deceptively jammed single-channel SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 152–167. doi: 10.1109/TGRS.2017.2744178
    [26]
    ELAD M, STARCK J L, QUERRE P, et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA)[J]. Applied and Computational Harmonic Analysis, 2005, 19(3): 340–358. doi: 10.1016/J.ACHA.2005.03.005
  • Relative Articles

    [1]CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247
    [2]LI Yuxi, ZHU Ruichao, SUI Sai, JIA Yuxiang, DING Chang, HAN Yajuan, QU Shaobo, WANG Jiafu. Dynamic Electromagnetic Control Technology and its Application Based on Metasurface[J]. Journal of Radars. doi: 10.12000/JR24259
    [3]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [4]ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216
    [5]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [6]ZHOU Hongcheng, YU Xiaoran, WANG Yu, YAN Zhongming. Research Progress of Electrically Controlled Reconfigurable Polarization Manipulation Using Metasurface[J]. Journal of Radars, 2024, 13(3): 696-713. doi: 10.12000/JR23230
    [7]ZHOU Jingyi, ZHENG Shilie, YU Xianbin, HUI Xiaonan, ZHANG Xianmin. Reconfigurable Mode Vortex Beam Generation Based on Transmissive Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2022, 11(4): 728-735. doi: 10.12000/JR22021
    [8]LAN Lan, LIAO Guisheng, XU Jingwei, ZHU Shengqi, ZENG Cao, ZHANG Yuhong. Waveform Design and Signal Processing Method of a Multifunctional Integrated System Based on a Frequency Diverse Array(in English)[J]. Journal of Radars, 2022, 11(5): 850-870. doi: 10.12000/JR22163
    [9]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [10]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [11]LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039
    [12]SHUANG Ya, LI Li, WANG Zhuo, WEI Menglin, LI Lianlin. Controllable Manipulation of Wi-Fi Signals Using Tunable Metasurface[J]. Journal of Radars, 2021, 10(2): 313-325. doi: 10.12000/JR21012
    [13]NIAN Yiheng, ZHOU Ningning, ZHU Shitao, ZHANG Anxue. Differential Coincidence Imaging Based on a Randomly Modulated Metamaterial Surface[J]. Journal of Radars, 2021, 10(2): 296-303. doi: 10.12000/JR20136
    [14]SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070
    [15]YANG Huanhuan, CAO Xiangyu, GAO Jun, LI Tong, LI Sijia, CONG Lili, ZHAO Xia. Recent Advances in Reconfigurable Metasurfaces and Their Applications[J]. Journal of Radars, 2021, 10(2): 206-219. doi: 10.12000/JR20137
    [16]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [17]JIANG Qian, WU Hao, WANG Yanyu. Airborne Multi-functional Maritime Surveillance Radar System Design and Key Techniques[J]. Journal of Radars, 2019, 8(3): 303-317. doi: 10.12000/JR19045
    [18]Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100
    [19]Hong Yongbin, Zhang Yong, Lu Zhenxing, Huang Wei. An Efficient Contrast-based Motion Compensation Algorithm for Stepped-frequency Radar[J]. Journal of Radars, 2016, 5(4): 378-388. doi: 10.12000/JR16068
    [20]Li Da-peng. A New Type of Moment Estimator for the K-distribution Shape Parameter with High Accuracy and Efficiency[J]. Journal of Radars, 2014, 3(4): 439-443. doi: 10.3724/SP.J.1300.2014.14017
  • Cited by

    Periodical cited type(8)

    1. 赵晓琛,赵东涛,袁航,王欢,张群. 低脉冲重复频率条件下无人机微动参数提取. 系统工程与电子技术. 2024(05): 1503-1513 .
    2. 李亚康,陈刚. 小角中子散射物理模型自动化筛选. 计算机工程. 2024(06): 56-64 .
    3. 李中余,桂亮,海宇,武俊杰,王党卫,王安乐,杨建宇. 基于变分模态分解与优选的超高分辨ISAR成像微多普勒抑制方法. 雷达学报. 2024(04): 852-865 . 本站查看
    4. CHEN Siyu,WANG Yong,CAO Rui. A high frequency vibration compensation approach for ultrahigh resolution SAR imaging based on sinusoidal frequency modulation Fourier-Bessel transform. Journal of Systems Engineering and Electronics. 2023(04): 894-905 .
    5. 唐波,谭思炜,张静远. 水下声探测系统载体振动干扰分析及抑制方法. 国防科技大学学报. 2022(06): 89-94 .
    6. 万显荣,谢德强,易建新,胡仕波,童云. 基于STFT谱图滑窗相消的微动杂波去除方法. 雷达学报. 2022(05): 794-804 . 本站查看
    7. 魏嘉琪,张磊,刘宏伟,盛佳恋. 曲线交叠外推的微动多目标宽带分辨算法. 电子与信息学报. 2019(12): 2889-2895 .
    8. 罗迎,龚逸帅,陈怡君,张群. 基于跟踪脉冲的MIMO雷达多目标微动特征提取. 雷达学报. 2018(05): 575-584 . 本站查看

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.0 %FULLTEXT: 13.0 %META: 79.2 %META: 79.2 %PDF: 7.8 %PDF: 7.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.1 %其他: 0.1 %China: 0.8 %China: 0.8 %India: 0.1 %India: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.3 %[]: 0.3 %三明: 0.0 %三明: 0.0 %上海: 1.3 %上海: 1.3 %东京: 0.0 %东京: 0.0 %东莞: 0.0 %东莞: 0.0 %中卫: 0.1 %中卫: 0.1 %临沂: 0.0 %临沂: 0.0 %乌海: 0.0 %乌海: 0.0 %亳州: 0.0 %亳州: 0.0 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.0 %佳木斯: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 17.3 %北京: 17.3 %北京市: 0.2 %北京市: 0.2 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南宁: 0.1 %南宁: 0.1 %南昌: 0.0 %南昌: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.1 %台州: 0.1 %合肥: 0.5 %合肥: 0.5 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %圣地亚哥: 0.0 %圣地亚哥: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.4 %天津: 0.4 %太原: 0.0 %太原: 0.0 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %安阳: 0.2 %安阳: 0.2 %宣城: 0.1 %宣城: 0.1 %巴中: 0.0 %巴中: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 1.2 %张家口: 1.2 %张家口市: 0.1 %张家口市: 0.1 %怒江: 0.0 %怒江: 0.0 %成都: 0.3 %成都: 0.3 %扬州: 0.1 %扬州: 0.1 %新乡: 0.4 %新乡: 0.4 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.0 %昆明: 0.0 %昌吉: 0.0 %昌吉: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.0 %沧州: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.4 %深圳: 0.4 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.0 %烟台: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.0 %珠海: 0.0 %白城: 0.0 %白城: 0.0 %白银: 0.3 %白银: 0.3 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.0 %衢州: 0.0 %西宁: 37.8 %西宁: 37.8 %西安: 0.4 %西安: 0.4 %贵港: 0.2 %贵港: 0.2 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %连云港: 0.0 %连云港: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.3 %郑州: 1.3 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %银川: 0.1 %银川: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.0 %长春: 0.0 %长沙: 0.7 %长沙: 0.7 %长治: 0.0 %长治: 0.0 %防城港: 0.0 %防城港: 0.0 %青岛: 0.4 %青岛: 0.4 %鞍山: 0.0 %鞍山: 0.0 %黄冈: 0.1 %黄冈: 0.1 %龙岩: 0.0 %龙岩: 0.0 %其他其他ChinaIndiaUnited States[]三明上海东京东莞中卫临沂乌海亳州佛山佳木斯兰州兰辛加利福尼亚州包头北京北京市北海十堰南京南宁南昌厦门台北台州合肥呼和浩特哥伦布嘉兴圣地亚哥大连天津太原宁波安康安阳宣城巴中常州广州库比蒂诺张家口张家口市怒江成都扬州新乡无锡旧金山昆明昌吉朝阳杭州格兰特县武汉沈阳沧州洛阳济南淄博淮南深圳湖州湘潭滨州漯河潍坊烟台玉林珠海白城白银盐城石家庄福州秦皇岛纽约美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安贵港赤峰运城连云港邯郸郑州鄂州重庆银川镇江长春长沙长治防城港青岛鞍山黄冈龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3477) PDF downloads(283) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint