Citation: | |
[1] |
KARIMOVA S. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data[J]. Advances in Space Research, 2012, 50(8): 1107–1124. doi: 10.1016/j.asr.2011.10.027
|
[2] |
IVANOV A Y and GINZBURG A I. Oceanic eddies in synthetic aperture radar images[J]. Journal of Earth System Science, 2002, 111(3): 281–295. doi: 10.1007/BF02701974
|
[3] |
KARIMOVA S and GADE M. Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery[J]. International Journal of Remote Sensing, 2016, 37(10): 2394–2414. doi: 10.1080/01431161.2016.1145367
|
[4] |
XU G J, YANG J S, DONG C M, et al. Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas[J]. International Journal of Remote Sensing, 2015, 36(18): 4621–4631. doi: 10.1080/01431161.2015.1084431
|
[5] |
TAVRI A, SINGHA S, LEHNER S, et al. Observation of sub-mesoscale eddies over Baltic Sea using TerraSAR-X and Oceanographic data[C]. Proceedings of Living Planet Symposium 2016, Prague, Czech Republic, 2016.
|
[6] |
LYZENGA D and WACKERMAN C. Detection and classification of ocean eddies using ERS-1 and aircraft SAR images[C]. Proceedings of the 3rd ERS Symposium on Space at the Service of our Environment, Florence, Italy, 1997: 1267–1271.
|
[7] |
MITNIK L, DUBINA V, and LOBANOV V. Cold season features of the Japan Sea coastal zone revealed by ERS SAR[C]. Proceedings of ERS-Envisat Symposium " Looking Down to Earth in the New Millennium”, Noordwijk, Netherlands, 2000: 4232–4242.
|
[8] |
LAVROVA O Y and MITYAGINA M I. Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas[J]. Izvestiya Atmospheric and Oceanic Physics, 2016, 52(9): 974–987. doi: 10.1134/S0001433816090176
|
[9] |
杨敏, 种劲松. 基于对数螺旋线边缘拟合的SAR图像漩涡信息提取方法[J]. 雷达学报, 2013, 2(2): 226–233. doi: 10.3724/SP.J.1300.2013.13004
YANG Min and CHONG Jing-song. A method based on logarithmic spiral edge fitting for information extraction of eddy in the SAR image[J]. Journal of Radars, 2013, 2(2): 226–233. doi: 10.3724/SP.J.1300.2013.13004
|
[10] |
DRESCHLER-FISCHER L, LAVROVA O, SEPPKE B, et al. Detecting and tracking small scale eddies in the black sea and the Baltic Sea using high-resolution Radarsat-2 and TerraSAR-X imagery (DTeddie)[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1214–1217. DOI: 10.1109/IGARSS.2014.6946650.
|
[11] |
KARIMOVA S. An approach to automated spiral eddy detection in SAR images[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, Texas, USA, 2017: 743–746. DOI: 10.1109/IGARSS.2017.8127059.
|
[12] |
HUANG D M, DU Y L, HE Q, et al. DeepEddy: A simple deep architecture for mesoscale oceanic eddy detection in SAR images[C]. Proceedings of the 14th IEEE International Conference on Networking, Sensing and Control, Calabria, Italy, 2017: 673–678. DOI: 10.1109/ICNSC.2017.8000171.
|
[13] |
于祥祯. 顺轨干涉SAR对海洋表面流场监测的若干问题研究[D]. [博士论文], 中国科学院研究生院, 2012: 30–34.
YU Xiang-zhen. Study on some problems of ocean surface current detection by along-track interferometric SAR[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2012: 30–34.
|
[14] |
ROMEISER R, ALPERS W, and WISMANN V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data[J]. Journal of Geophysical Research, 1997, 102(C11): 25237–25250. doi: 10.1029/97JC00190
|
[15] |
ROMEISER R and ALPERS W. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography[J]. Journal of Geophysical Research, 1997, 102(C11): 25251–25267. doi: 10.1029/97JC00191
|
[16] |
ROMEISER R, SEIBT-WINCKLER A, HEINEKE M, et al. Validation of current and bathymetry measurements in the German Bight by airborne along-track interferometric SAR[C]. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1822–1824. DOI: 10.1109/IGARSS.2002.1026266.
|
[17] |
OUYANG Y, CHONG J S, WU Y R, et al. Simulation studies of internal waves in SAR images under different SAR and wind field conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1734–1743. doi: 10.1109/TGRS.2010.2087384
|
[18] |
朱克勤, 彭杰. 高等流体力学[M]. 北京: 科学出版社, 2017: 132–138.
ZHU Ke-qin and PENG Jie. Advanced Fluid Mechanics[M]. Beijing: Science Press, 2017: 132–138.
|
[19] |
BURGERS J M. A mathematical model illustrating the theory of turbulence[J]. Advances in Applied Mechanics, 1948, 1: 171–199. doi: 10.1016/S0065-2156(08)70100-5
|
[20] |
ROTT N. On the viscous core of a line vortex[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1958, 9(5/6): 543–553. doi: 10.1007/BF02424773
|
[21] |
LONGUET-HIGGINS M S and STEWART R W. Radiation stresses in water waves; a physical discussion, with applications[J]. Deep Sea Research and Oceanographic Abstracts, 1964, 11(4): 529–562. doi: 10.1016/0011-7471(64)90001-4
|
[22] |
余颖, 王小青, 朱敏慧, 等. 基于二阶散射的海面三尺度雷达后向散射模型[J]. 电子学报, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022
YU Ying, WANG Xiao-qing, ZHU Min-hui, et al. Three-scale radar backscattering model of the ocean surface based on second-order scattering[J]. Acta Electronica Sinica, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022
|
[23] |
WHITHAM G B. A general approach to linear and non-linear dispersive waves using a Lagrangian[J]. Journal of Fluid Mechanics, 1965, 22(2): 273–283. doi: 10.1017/S0022112065000745
|
[24] |
ALPERS W R, ROSS D B, and RUFENACH C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research, 1981, 86(C7): 6481–6498. doi: 10.1029/JC086iC07p06481
|
[25] |
ROMEISER R and THOMPSON D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446–458. doi: 10.1109/36.823940
|
[26] |
ROBINSON I S. Discovering the Ocean from Space: The Unique Applications of Satellite Oceanography[M]. Chichester, UK: Springer-Praxis, 2010: 76–78.
|
[1] | LUO Ru, ZHAO Lingjun, HE Qishan, JI Kefeng, KUANG Gangyao. Intelligent Technology for Aircraft Detection and Recognition through SAR Imagery: Advancements and Prospects[J]. Journal of Radars, 2024, 13(2): 307-330. doi: 10.12000/JR23056 |
[2] | YOU Ruixi, QIAN Yutong, XU Feng. Preliminary Research on the Effectiveness of Gestalt Perceptual Principles in SAR Images[J]. Journal of Radars, 2024, 13(2): 345-358. doi: 10.12000/JR23187 |
[3] | LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107 |
[4] | LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004 |
[5] | CHEN Siwei, CUI Xingchao, LI Mingdian, TAO Chensong, LI Haoliang. SAR Image Active Jamming Type Recognition Based on Deep CNN Model[J]. Journal of Radars, 2022, 11(5): 897-908. doi: 10.12000/JR22143 |
[6] | WANG Ruyi, ZHANG Hanqing, HAN Bing, ZHANG Yueting, GUO Jiayi, HONG Wen, SUN Wei, HU Wenlong. Multiangle SAR Dataset Construction of Aircraft Targets Based on Angle Interpolation Simulation[J]. Journal of Radars, 2022, 11(4): 637-651. doi: 10.12000/JR21193 |
[7] | LIAO Xingxing, LIU Zhe, WU Junjie. Azimuth Unambiguity Suppression for Low-oversampled Staggered SAR Images[J]. Journal of Radars, 2021, 10(6): 874-884. doi: 10.12000/JR21106 |
[8] | LIU Fangjian, LI Yuan. SAR Remote Sensing Image Ship Detection Method NanoDet Based on Visual Saliency[J]. Journal of Radars, 2021, 10(6): 885-894. doi: 10.12000/JR21105 |
[9] | GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059 |
[10] | GUO Qian, WANG Haipeng, XU Feng. Research Progress on Aircraft Detection and Recognition in SAR Imagery[J]. Journal of Radars, 2020, 9(3): 497-513. doi: 10.12000/JR20020 |
[11] | WANG Chao, QIU Xiaolan, LI Fangfang, LEI Bin. An InSAR Image Simulation and Elevation Inversion Method for Buildings[J]. Journal of Radars, 2020, 9(2): 373-385. doi: 10.12000/JR20010 |
[12] | Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066 |
[13] | Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031 |
[14] | Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059 |
[15] | Wu Yiquan, Wang Zhilai. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation[J]. Journal of Radars, 2017, 6(4): 349-358. doi: 10.12000/JR17019 |
[16] | Xu Zhen, Wang Robert, Li Ning, Zhang Heng, Zhang Lei. A Novel Approach to Change Detection in SAR Images with CNN Classification[J]. Journal of Radars, 2017, 6(5): 483-491. doi: 10.12000/JR17075 |
[17] | Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071 |
[18] | Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037 |
[19] | Zhang Yue-ting, Qiu Xiao-lan, Ding Chi-biao, Lei Bin, Fu Kun. The Simulation and Characteristics Analysis on High Resolution SAR Images of Bridges[J]. Journal of Radars, 2015, 4(1): 78-83. doi: 10.12000/JR14139 |
[20] | Dong Chun-zhu, Hu Li-ping, Zhu Guo-qing, Yin Hong-cheng. Efficient Simulation Method for High Quality SAR Images of Complex Ground Vehicles[J]. Journal of Radars, 2015, 4(3): 351-360. doi: 10.12000/JR15057 |
1. | 赵金奇,李宇轩,刘子蓉,安庆,宋时雨,牛玉芬. 基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法. 测绘学报. 2024(12): 2375-2390 . ![]() | |
2. | 庄会富,王鹏,苏亚男,张祥,范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测. 自然资源遥感. 2024(04): 218-228 . ![]() | |
3. | 赵维谚,沈志,徐真,杨亮,雷明阳. 基于增强学习机制的SAR图像水域分割方法. 计算机应用与软件. 2023(05): 262-265+337 . ![]() | |
4. | 王磊,连增增. 基于Sentinel-1A的2020年鄱阳湖流域洪水灾害遥感监测. 地理空间信息. 2022(06): 43-46 . ![]() | |
5. | 李宁,郭志顺,毋琳,赵建辉. River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型. 雷达学报. 2022(03): 324-334 . ![]() | |
6. | 黄平平,段盈宏,谭维贤,徐伟. 基于融合差异图的变化检测方法及其在洪灾中的应用. 雷达学报. 2021(01): 143-158 . ![]() | |
7. | 董天成,杨肖,李卉,张志,齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取. 国土资源遥感. 2021(01): 129-137 . ![]() | |
8. | 李宁,吕宗森,郭拯危. 联合变化检测与子带对消技术的SAR图像干扰抑制方法. 系统工程与电子技术. 2021(09): 2484-2492 . ![]() | |
9. | 郭山川,杜培军,蒙亚平,王欣,唐鹏飞,林聪,夏俊士. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报. 2021(10): 2127-2141 . ![]() | |
10. | 李宁,牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法. 雷达学报. 2020(01): 174-184 . ![]() | |
11. | 吴瑞娟,何秀凤,王静. 结合像元级与对象级的滨海湿地变化检测方法. 地球信息科学学报. 2020(10): 2078-2087 . ![]() | |
12. | 冀广宇,董勇伟,卜运成,李焱磊,周良将,梁兴东. 基于目标相干性表征差异的多波段SAR相干变化检测方法. 雷达学报. 2018(04): 455-464 . ![]() | |
13. | 牛世林,郭拯危,李宁,毋琳,赵建辉. 星载SAR水域分割研究进展与趋势分析. 聊城大学学报(自然科学版). 2018(02): 72-86 . ![]() |