SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: WANG Yuhang, YANG Min, and CHONG Jinsong. SAR image simulation method for oceanic eddies[J]. Journal of Radars, 2019, 8(3): 382–390. doi: 10.12000/JR18052

SAR Image Simulation Method for Oceanic Eddies

DOI: 10.12000/JR18052
Funds:  The National Ministries Foundation, The Foundation of National Key Laboratory of Science and Technology on Microwave Imaging (CXJJ_15S119)
More Information
  • Corresponding author: CHONG Jinsong, iecas_chong@163.com
  • Received Date: 2018-07-05
  • Rev Recd Date: 2018-09-11
  • Available Online: 2018-10-11
  • Publish Date: 2019-06-01
  • Oceanic eddies, which play an important role in ocean thermal cycling, is a significant branch of oceanic scientific research. Synthetic Aperture Radar (SAR) provides a large number of images for the observation and investigation of oceanic eddies. However, SAR imagery of oceanic eddies is affected by various environmental factors; as such, it is difficult to interpret eddy features from SAR images. Alternatively, simulated SAR images can be used to investigate eddy features; however, few methods have been established for simulating SAR images for oceanic eddies. To better interpret the eddy features in real SAR images, an SAR image simulation method for oceanic eddies is proposed in this paper. First, a two-dimensional eddy surface current field was built based on the Burgers-Rott vortex model in hydrodynamics; SAR eddy images were then simulated according to the given eddy current field, wind field, and radar parameters. Images of cyclonic and anticyclonic eddies were simulated and evaluated. In addition, a standard for evaluating the similarity between real and simulated SAR eddy images was established. The features of the simulated SAR eddy images show good similarity with the real SAR eddy images, which validates the effectiveness of the proposed simulation method.

     

  • [1]
    KARIMOVA S. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data[J]. Advances in Space Research, 2012, 50(8): 1107–1124. doi: 10.1016/j.asr.2011.10.027
    [2]
    IVANOV A Y and GINZBURG A I. Oceanic eddies in synthetic aperture radar images[J]. Journal of Earth System Science, 2002, 111(3): 281–295. doi: 10.1007/BF02701974
    [3]
    KARIMOVA S and GADE M. Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery[J]. International Journal of Remote Sensing, 2016, 37(10): 2394–2414. doi: 10.1080/01431161.2016.1145367
    [4]
    XU G J, YANG J S, DONG C M, et al. Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas[J]. International Journal of Remote Sensing, 2015, 36(18): 4621–4631. doi: 10.1080/01431161.2015.1084431
    [5]
    TAVRI A, SINGHA S, LEHNER S, et al. Observation of sub-mesoscale eddies over Baltic Sea using TerraSAR-X and Oceanographic data[C]. Proceedings of Living Planet Symposium 2016, Prague, Czech Republic, 2016.
    [6]
    LYZENGA D and WACKERMAN C. Detection and classification of ocean eddies using ERS-1 and aircraft SAR images[C]. Proceedings of the 3rd ERS Symposium on Space at the Service of our Environment, Florence, Italy, 1997: 1267–1271.
    [7]
    MITNIK L, DUBINA V, and LOBANOV V. Cold season features of the Japan Sea coastal zone revealed by ERS SAR[C]. Proceedings of ERS-Envisat Symposium " Looking Down to Earth in the New Millennium”, Noordwijk, Netherlands, 2000: 4232–4242.
    [8]
    LAVROVA O Y and MITYAGINA M I. Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas[J]. Izvestiya Atmospheric and Oceanic Physics, 2016, 52(9): 974–987. doi: 10.1134/S0001433816090176
    [9]
    杨敏, 种劲松. 基于对数螺旋线边缘拟合的SAR图像漩涡信息提取方法[J]. 雷达学报, 2013, 2(2): 226–233. doi: 10.3724/SP.J.1300.2013.13004

    YANG Min and CHONG Jing-song. A method based on logarithmic spiral edge fitting for information extraction of eddy in the SAR image[J]. Journal of Radars, 2013, 2(2): 226–233. doi: 10.3724/SP.J.1300.2013.13004
    [10]
    DRESCHLER-FISCHER L, LAVROVA O, SEPPKE B, et al. Detecting and tracking small scale eddies in the black sea and the Baltic Sea using high-resolution Radarsat-2 and TerraSAR-X imagery (DTeddie)[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1214–1217. DOI: 10.1109/IGARSS.2014.6946650.
    [11]
    KARIMOVA S. An approach to automated spiral eddy detection in SAR images[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, Texas, USA, 2017: 743–746. DOI: 10.1109/IGARSS.2017.8127059.
    [12]
    HUANG D M, DU Y L, HE Q, et al. DeepEddy: A simple deep architecture for mesoscale oceanic eddy detection in SAR images[C]. Proceedings of the 14th IEEE International Conference on Networking, Sensing and Control, Calabria, Italy, 2017: 673–678. DOI: 10.1109/ICNSC.2017.8000171.
    [13]
    于祥祯. 顺轨干涉SAR对海洋表面流场监测的若干问题研究[D]. [博士论文], 中国科学院研究生院, 2012: 30–34.

    YU Xiang-zhen. Study on some problems of ocean surface current detection by along-track interferometric SAR[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2012: 30–34.
    [14]
    ROMEISER R, ALPERS W, and WISMANN V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data[J]. Journal of Geophysical Research, 1997, 102(C11): 25237–25250. doi: 10.1029/97JC00190
    [15]
    ROMEISER R and ALPERS W. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography[J]. Journal of Geophysical Research, 1997, 102(C11): 25251–25267. doi: 10.1029/97JC00191
    [16]
    ROMEISER R, SEIBT-WINCKLER A, HEINEKE M, et al. Validation of current and bathymetry measurements in the German Bight by airborne along-track interferometric SAR[C]. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1822–1824. DOI: 10.1109/IGARSS.2002.1026266.
    [17]
    OUYANG Y, CHONG J S, WU Y R, et al. Simulation studies of internal waves in SAR images under different SAR and wind field conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1734–1743. doi: 10.1109/TGRS.2010.2087384
    [18]
    朱克勤, 彭杰. 高等流体力学[M]. 北京: 科学出版社, 2017: 132–138.

    ZHU Ke-qin and PENG Jie. Advanced Fluid Mechanics[M]. Beijing: Science Press, 2017: 132–138.
    [19]
    BURGERS J M. A mathematical model illustrating the theory of turbulence[J]. Advances in Applied Mechanics, 1948, 1: 171–199. doi: 10.1016/S0065-2156(08)70100-5
    [20]
    ROTT N. On the viscous core of a line vortex[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1958, 9(5/6): 543–553. doi: 10.1007/BF02424773
    [21]
    LONGUET-HIGGINS M S and STEWART R W. Radiation stresses in water waves; a physical discussion, with applications[J]. Deep Sea Research and Oceanographic Abstracts, 1964, 11(4): 529–562. doi: 10.1016/0011-7471(64)90001-4
    [22]
    余颖, 王小青, 朱敏慧, 等. 基于二阶散射的海面三尺度雷达后向散射模型[J]. 电子学报, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022

    YU Ying, WANG Xiao-qing, ZHU Min-hui, et al. Three-scale radar backscattering model of the ocean surface based on second-order scattering[J]. Acta Electronica Sinica, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022
    [23]
    WHITHAM G B. A general approach to linear and non-linear dispersive waves using a Lagrangian[J]. Journal of Fluid Mechanics, 1965, 22(2): 273–283. doi: 10.1017/S0022112065000745
    [24]
    ALPERS W R, ROSS D B, and RUFENACH C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research, 1981, 86(C7): 6481–6498. doi: 10.1029/JC086iC07p06481
    [25]
    ROMEISER R and THOMPSON D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446–458. doi: 10.1109/36.823940
    [26]
    ROBINSON I S. Discovering the Ocean from Space: The Unique Applications of Satellite Oceanography[M]. Chichester, UK: Springer-Praxis, 2010: 76–78.
  • Relative Articles

    [1]CHEN Yan, ZHANG Rui, LI Yadong, SONG Ruiyuan, GENG Ruixu, GONG Hanqin, WANG Binquan, ZHANG Dongheng, HU Yang. An Overview of Human Pose Estimation Based on Wireless Signals[J]. Journal of Radars, 2025, 14(1): 229-247. doi: 10.12000/JR24189
    [2]LI Nian, LIU Jie, YU Junming, ZHU Zhihao, LIU Jianguang, GUO Shisheng, CHEN Jiahui, CUI Guolong, KONG Lingjiang, YANG Xiaobo. Building Layout Tomography Method Based on Joint Multidomain Direct Wave Estimation[J]. Journal of Radars, 2025, 14(2): 309-321. doi: 10.12000/JR24220
    [3]ZHAO Xiang, WANG Wei, LI Chenyang, GUAN Jian, LI Gang. Diagnosis of Sleep Apnea Hypopnea Syndrome Using Fusion of Micro-motion Signals from Millimeter-wave Radar and Pulse Wave Data[J]. Journal of Radars, 2025, 14(1): 102-116. doi: 10.12000/JR24107
    [4]JIN Biao, SUN Kangsheng, WU Hao, LI Zixuan, ZHANG Zhenkai, CAI Yan, LI Rongmin, ZHANG Xiangqun, DU Genyuan. 3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method[J]. Journal of Radars, 2025, 14(1): 73-90. doi: 10.12000/JR24195
    [5]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [6]DU Lan, CHEN Xiaoyang, SHI Yu, XUE Shikun, XIE Meng. MMRGait-1.0: A Radar Time-frequency Spectrogram Dataset for Gait Recognition under Multi-view and Multi-wearing Conditions[J]. Journal of Radars, 2023, 12(4): 892-905. doi: 10.12000/JR22227
    [7]WAQI Riti, LI Gang, ZHAO Zhichun, ZE Zhenghua. Feature Selection Method of Radar-based Road Target Recognition via Histogram Analysis and Adaptive Genetics[J]. Journal of Radars, 2023, 12(5): 1014-1030. doi: 10.12000/JR22245
    [8]HUANG Yan, ZHANG Hui, LAN Lyuhongkang, DENG Kun, YANG Yang, ZHANG Ruizhe, LIU Jiang, ZHANG Yanjun, WANG Yunxuan, ZHOU Rui, XU Jun, XI Xinsuo, ZHANG Xia, ZHENG Kaihang, LIU Yuming, HONG Wei. Overview of Signal Processing Techniques for Automotive Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 923-970. doi: 10.12000/JR23119
    [9]SHU Yue, FU Dongning, CHEN Zhanye, HUANG Yan, ZHANG Yanjun, TAN Xiaoheng, TAO Jun. Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986-999. doi: 10.12000/JR23040
    [10]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [11]DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036
    [12]YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, LU Dawei, DENG Bin, MA Yanxin. Human Fall Detection Method Using Millimeter-wave Radar Based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656-664. doi: 10.12000/JR21015
    [13]DANG Xiangwei, QIN Fei, BU Xiangxi, LIANG Xingdong. A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving[J]. Journal of Radars, 2021, 10(4): 622-631. doi: 10.12000/JR21036
    [14]Xie Pengfei, Zhang Lei, Wu Zhenhua. A Three-dimensional Imaging Algorithm Fusion with ω-K and BP Algorithm for Millimeter-wave Cylindrical Scanning[J]. Journal of Radars, 2018, 7(3): 387-394. doi: 10.12000/JR17112
    [15]Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053
    [16]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [17]Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [18]Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [19]Liu Hai-bo, Sheng Meng-meng, Yang Xiao-qian. A Study of MMW Collision Avoidance Radar System for Trains[J]. Journal of Radars, 2013, 2(2): 234-238. doi: 10.3724/SP.J.1300.2013.20091
    [20]Qiao Ming, Pan Zhou-hao, Liu Bo, Li Dao-jing. Analysis and Compensation Method Research on the Channel Leakage Error for Three-baseline MMWInSAR[J]. Journal of Radars, 2013, 2(1): 68-76. doi: 10.3724/SP.J.1300.2013.13008
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.1 %FULLTEXT: 36.1 %META: 48.9 %META: 48.9 %PDF: 14.9 %PDF: 14.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %其他: 1.8 %其他: 1.8 %Absecon: 0.1 %Absecon: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.6 %China: 0.6 %Halfweg: 0.1 %Halfweg: 0.1 %Herndon: 0.1 %Herndon: 0.1 %[]: 0.2 %[]: 0.2 %三亚: 0.1 %三亚: 0.1 %上海: 4.6 %上海: 4.6 %东京: 0.4 %东京: 0.4 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %东营: 0.2 %东营: 0.2 %丹东: 0.1 %丹东: 0.1 %亳州: 0.1 %亳州: 0.1 %仙桃: 0.1 %仙桃: 0.1 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.6 %佛山: 0.6 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.4 %内江: 0.4 %利斯本: 0.2 %利斯本: 0.2 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %包头: 0.1 %包头: 0.1 %北京: 9.3 %北京: 9.3 %十堰: 0.1 %十堰: 0.1 %南京: 5.8 %南京: 5.8 %南充: 0.1 %南充: 0.1 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %卡梅尔: 0.3 %卡梅尔: 0.3 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 1.7 %合肥: 1.7 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸宁: 0.2 %咸宁: 0.2 %哈尔滨: 0.7 %哈尔滨: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.5 %威海: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.3 %宁波: 0.3 %安庆: 0.1 %安庆: 0.1 %安康: 0.3 %安康: 0.3 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 2.1 %广州: 2.1 %庆阳: 0.2 %庆阳: 0.2 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.1 %廊坊: 0.1 %开封: 0.5 %开封: 0.5 %张家口: 1.2 %张家口: 1.2 %张家界: 0.2 %张家界: 0.2 %徐州: 0.4 %徐州: 0.4 %惠州: 0.2 %惠州: 0.2 %慕尼黑: 0.2 %慕尼黑: 0.2 %成都: 4.8 %成都: 4.8 %扬州: 0.2 %扬州: 0.2 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新竹: 0.3 %新竹: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.9 %昆明: 1.9 %晋城: 0.1 %晋城: 0.1 %普林斯顿: 0.1 %普林斯顿: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.1 %杭州: 3.1 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.4 %桂林: 0.4 %武威: 0.1 %武威: 0.1 %武汉: 0.6 %武汉: 0.6 %汕头: 0.1 %汕头: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %泰州: 0.1 %泰州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.5 %深圳: 2.5 %清远: 0.3 %清远: 0.3 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.0 %漯河: 1.0 %烟台: 0.1 %烟台: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.1 %米兰: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.7 %绍兴: 0.7 %绵阳: 0.1 %绵阳: 0.1 %罗马: 0.1 %罗马: 0.1 %自贡: 0.3 %自贡: 0.3 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.6 %苏州: 0.6 %茂名: 0.1 %茂名: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 7.1 %西宁: 7.1 %西安: 3.4 %西安: 3.4 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.3 %费利蒙: 0.3 %运城: 0.5 %运城: 0.5 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 1.2 %重庆: 1.2 %金昌: 0.1 %金昌: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 2.4 %长沙: 2.4 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.5 %青岛: 0.5 %首尔特别: 0.4 %首尔特别: 0.4 %香港: 0.1 %香港: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AbseconCentral DistrictChinaHalfwegHerndon[]三亚上海东京东京都东莞东营丹东亳州仙桃伦敦佛山兰州兰辛内江利斯本加利福尼亚州包头北京十堰南京南充南平南昌南通卡拉奇卡梅尔印多尔厦门台北台州合肥吉林呼和浩特咸宁哈尔滨哥伦布唐山嘉兴大连天津太原威海娄底宁波安庆安康宜宾宣城密蘇里城巴中布鲁塞尔常州常德平顶山广州庆阳库比蒂诺廊坊开封张家口张家界徐州惠州慕尼黑成都扬州揭阳新乡新竹无锡昆明晋城普林斯顿朝阳杭州格兰特县桂林武威武汉汕头江门沈阳泰安泰州泸州洛杉矶洛阳济南海口淄博淮南深圳清远温州渭南湖州湘潭湛江漯河烟台白城石家庄福州秦皇岛米兰纽约绍兴绵阳罗马自贡芒廷维尤芝加哥苏州茂名葫芦岛蚌埠衡阳襄阳西宁西安西雅图贵阳费利蒙运城邯郸邵阳郑州重庆金昌长春长沙阿姆斯特丹青岛首尔特别香港黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2993) PDF downloads(282) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint