SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: WANG Yuhang, YANG Min, and CHONG Jinsong. SAR image simulation method for oceanic eddies[J]. Journal of Radars, 2019, 8(3): 382–390. doi: 10.12000/JR18052

SAR Image Simulation Method for Oceanic Eddies

DOI: 10.12000/JR18052
Funds:  The National Ministries Foundation, The Foundation of National Key Laboratory of Science and Technology on Microwave Imaging (CXJJ_15S119)
More Information
  • Corresponding author: CHONG Jinsong, iecas_chong@163.com
  • Received Date: 2018-07-05
  • Rev Recd Date: 2018-09-11
  • Available Online: 2018-10-11
  • Publish Date: 2019-06-01
  • Oceanic eddies, which play an important role in ocean thermal cycling, is a significant branch of oceanic scientific research. Synthetic Aperture Radar (SAR) provides a large number of images for the observation and investigation of oceanic eddies. However, SAR imagery of oceanic eddies is affected by various environmental factors; as such, it is difficult to interpret eddy features from SAR images. Alternatively, simulated SAR images can be used to investigate eddy features; however, few methods have been established for simulating SAR images for oceanic eddies. To better interpret the eddy features in real SAR images, an SAR image simulation method for oceanic eddies is proposed in this paper. First, a two-dimensional eddy surface current field was built based on the Burgers-Rott vortex model in hydrodynamics; SAR eddy images were then simulated according to the given eddy current field, wind field, and radar parameters. Images of cyclonic and anticyclonic eddies were simulated and evaluated. In addition, a standard for evaluating the similarity between real and simulated SAR eddy images was established. The features of the simulated SAR eddy images show good similarity with the real SAR eddy images, which validates the effectiveness of the proposed simulation method.

     

  • [1]
    KARIMOVA S. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data[J]. Advances in Space Research, 2012, 50(8): 1107–1124. doi: 10.1016/j.asr.2011.10.027
    [2]
    IVANOV A Y and GINZBURG A I. Oceanic eddies in synthetic aperture radar images[J]. Journal of Earth System Science, 2002, 111(3): 281–295. doi: 10.1007/BF02701974
    [3]
    KARIMOVA S and GADE M. Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery[J]. International Journal of Remote Sensing, 2016, 37(10): 2394–2414. doi: 10.1080/01431161.2016.1145367
    [4]
    XU G J, YANG J S, DONG C M, et al. Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas[J]. International Journal of Remote Sensing, 2015, 36(18): 4621–4631. doi: 10.1080/01431161.2015.1084431
    [5]
    TAVRI A, SINGHA S, LEHNER S, et al. Observation of sub-mesoscale eddies over Baltic Sea using TerraSAR-X and Oceanographic data[C]. Proceedings of Living Planet Symposium 2016, Prague, Czech Republic, 2016.
    [6]
    LYZENGA D and WACKERMAN C. Detection and classification of ocean eddies using ERS-1 and aircraft SAR images[C]. Proceedings of the 3rd ERS Symposium on Space at the Service of our Environment, Florence, Italy, 1997: 1267–1271.
    [7]
    MITNIK L, DUBINA V, and LOBANOV V. Cold season features of the Japan Sea coastal zone revealed by ERS SAR[C]. Proceedings of ERS-Envisat Symposium " Looking Down to Earth in the New Millennium”, Noordwijk, Netherlands, 2000: 4232–4242.
    [8]
    LAVROVA O Y and MITYAGINA M I. Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas[J]. Izvestiya Atmospheric and Oceanic Physics, 2016, 52(9): 974–987. doi: 10.1134/S0001433816090176
    [9]
    杨敏, 种劲松. 基于对数螺旋线边缘拟合的SAR图像漩涡信息提取方法[J]. 雷达学报, 2013, 2(2): 226–233. doi: 10.3724/SP.J.1300.2013.13004

    YANG Min and CHONG Jing-song. A method based on logarithmic spiral edge fitting for information extraction of eddy in the SAR image[J]. Journal of Radars, 2013, 2(2): 226–233. doi: 10.3724/SP.J.1300.2013.13004
    [10]
    DRESCHLER-FISCHER L, LAVROVA O, SEPPKE B, et al. Detecting and tracking small scale eddies in the black sea and the Baltic Sea using high-resolution Radarsat-2 and TerraSAR-X imagery (DTeddie)[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1214–1217. DOI: 10.1109/IGARSS.2014.6946650.
    [11]
    KARIMOVA S. An approach to automated spiral eddy detection in SAR images[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, Texas, USA, 2017: 743–746. DOI: 10.1109/IGARSS.2017.8127059.
    [12]
    HUANG D M, DU Y L, HE Q, et al. DeepEddy: A simple deep architecture for mesoscale oceanic eddy detection in SAR images[C]. Proceedings of the 14th IEEE International Conference on Networking, Sensing and Control, Calabria, Italy, 2017: 673–678. DOI: 10.1109/ICNSC.2017.8000171.
    [13]
    于祥祯. 顺轨干涉SAR对海洋表面流场监测的若干问题研究[D]. [博士论文], 中国科学院研究生院, 2012: 30–34.

    YU Xiang-zhen. Study on some problems of ocean surface current detection by along-track interferometric SAR[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2012: 30–34.
    [14]
    ROMEISER R, ALPERS W, and WISMANN V. An improved composite surface model for the radar backscattering cross section of the ocean surface: 1. Theory of the model and optimization/validation by scatterometer data[J]. Journal of Geophysical Research, 1997, 102(C11): 25237–25250. doi: 10.1029/97JC00190
    [15]
    ROMEISER R and ALPERS W. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography[J]. Journal of Geophysical Research, 1997, 102(C11): 25251–25267. doi: 10.1029/97JC00191
    [16]
    ROMEISER R, SEIBT-WINCKLER A, HEINEKE M, et al. Validation of current and bathymetry measurements in the German Bight by airborne along-track interferometric SAR[C]. Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1822–1824. DOI: 10.1109/IGARSS.2002.1026266.
    [17]
    OUYANG Y, CHONG J S, WU Y R, et al. Simulation studies of internal waves in SAR images under different SAR and wind field conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1734–1743. doi: 10.1109/TGRS.2010.2087384
    [18]
    朱克勤, 彭杰. 高等流体力学[M]. 北京: 科学出版社, 2017: 132–138.

    ZHU Ke-qin and PENG Jie. Advanced Fluid Mechanics[M]. Beijing: Science Press, 2017: 132–138.
    [19]
    BURGERS J M. A mathematical model illustrating the theory of turbulence[J]. Advances in Applied Mechanics, 1948, 1: 171–199. doi: 10.1016/S0065-2156(08)70100-5
    [20]
    ROTT N. On the viscous core of a line vortex[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 1958, 9(5/6): 543–553. doi: 10.1007/BF02424773
    [21]
    LONGUET-HIGGINS M S and STEWART R W. Radiation stresses in water waves; a physical discussion, with applications[J]. Deep Sea Research and Oceanographic Abstracts, 1964, 11(4): 529–562. doi: 10.1016/0011-7471(64)90001-4
    [22]
    余颖, 王小青, 朱敏慧, 等. 基于二阶散射的海面三尺度雷达后向散射模型[J]. 电子学报, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022

    YU Ying, WANG Xiao-qing, ZHU Min-hui, et al. Three-scale radar backscattering model of the ocean surface based on second-order scattering[J]. Acta Electronica Sinica, 2008, 36(9): 1771–1775. doi: 10.3321/j.issn:0372-2112.2008.09.022
    [23]
    WHITHAM G B. A general approach to linear and non-linear dispersive waves using a Lagrangian[J]. Journal of Fluid Mechanics, 1965, 22(2): 273–283. doi: 10.1017/S0022112065000745
    [24]
    ALPERS W R, ROSS D B, and RUFENACH C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research, 1981, 86(C7): 6481–6498. doi: 10.1029/JC086iC07p06481
    [25]
    ROMEISER R and THOMPSON D R. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 446–458. doi: 10.1109/36.823940
    [26]
    ROBINSON I S. Discovering the Ocean from Space: The Unique Applications of Satellite Oceanography[M]. Chichester, UK: Springer-Praxis, 2010: 76–78.
  • Relative Articles

    [1]LUO Ru, ZHAO Lingjun, HE Qishan, JI Kefeng, KUANG Gangyao. Intelligent Technology for Aircraft Detection and Recognition through SAR Imagery: Advancements and Prospects[J]. Journal of Radars, 2024, 13(2): 307-330. doi: 10.12000/JR23056
    [2]YOU Ruixi, QIAN Yutong, XU Feng. Preliminary Research on the Effectiveness of Gestalt Perceptual Principles in SAR Images[J]. Journal of Radars, 2024, 13(2): 345-358. doi: 10.12000/JR23187
    [3]LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107
    [4]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [5]CHEN Siwei, CUI Xingchao, LI Mingdian, TAO Chensong, LI Haoliang. SAR Image Active Jamming Type Recognition Based on Deep CNN Model[J]. Journal of Radars, 2022, 11(5): 897-908. doi: 10.12000/JR22143
    [6]WANG Ruyi, ZHANG Hanqing, HAN Bing, ZHANG Yueting, GUO Jiayi, HONG Wen, SUN Wei, HU Wenlong. Multiangle SAR Dataset Construction of Aircraft Targets Based on Angle Interpolation Simulation[J]. Journal of Radars, 2022, 11(4): 637-651. doi: 10.12000/JR21193
    [7]LIAO Xingxing, LIU Zhe, WU Junjie. Azimuth Unambiguity Suppression for Low-oversampled Staggered SAR Images[J]. Journal of Radars, 2021, 10(6): 874-884. doi: 10.12000/JR21106
    [8]LIU Fangjian, LI Yuan. SAR Remote Sensing Image Ship Detection Method NanoDet Based on Visual Saliency[J]. Journal of Radars, 2021, 10(6): 885-894. doi: 10.12000/JR21105
    [9]GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059
    [10]GUO Qian, WANG Haipeng, XU Feng. Research Progress on Aircraft Detection and Recognition in SAR Imagery[J]. Journal of Radars, 2020, 9(3): 497-513. doi: 10.12000/JR20020
    [11]WANG Chao, QIU Xiaolan, LI Fangfang, LEI Bin. An InSAR Image Simulation and Elevation Inversion Method for Buildings[J]. Journal of Radars, 2020, 9(2): 373-385. doi: 10.12000/JR20010
    [12]Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066
    [13]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [14]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [15]Wu Yiquan, Wang Zhilai. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation[J]. Journal of Radars, 2017, 6(4): 349-358. doi: 10.12000/JR17019
    [16]Xu Zhen, Wang Robert, Li Ning, Zhang Heng, Zhang Lei. A Novel Approach to Change Detection in SAR Images with CNN Classification[J]. Journal of Radars, 2017, 6(5): 483-491. doi: 10.12000/JR17075
    [17]Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071
    [18]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
    [19]Zhang Yue-ting, Qiu Xiao-lan, Ding Chi-biao, Lei Bin, Fu Kun. The Simulation and Characteristics Analysis on High Resolution SAR Images of Bridges[J]. Journal of Radars, 2015, 4(1): 78-83. doi: 10.12000/JR14139
    [20]Dong Chun-zhu, Hu Li-ping, Zhu Guo-qing, Yin Hong-cheng. Efficient Simulation Method for High Quality SAR Images of Complex Ground Vehicles[J]. Journal of Radars, 2015, 4(3): 351-360. doi: 10.12000/JR15057
  • Cited by

    Periodical cited type(13)

    1. 赵金奇,李宇轩,刘子蓉,安庆,宋时雨,牛玉芬. 基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法. 测绘学报. 2024(12): 2375-2390 .
    2. 庄会富,王鹏,苏亚男,张祥,范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测. 自然资源遥感. 2024(04): 218-228 .
    3. 赵维谚,沈志,徐真,杨亮,雷明阳. 基于增强学习机制的SAR图像水域分割方法. 计算机应用与软件. 2023(05): 262-265+337 .
    4. 王磊,连增增. 基于Sentinel-1A的2020年鄱阳湖流域洪水灾害遥感监测. 地理空间信息. 2022(06): 43-46 .
    5. 李宁,郭志顺,毋琳,赵建辉. River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型. 雷达学报. 2022(03): 324-334 . 本站查看
    6. 黄平平,段盈宏,谭维贤,徐伟. 基于融合差异图的变化检测方法及其在洪灾中的应用. 雷达学报. 2021(01): 143-158 . 本站查看
    7. 董天成,杨肖,李卉,张志,齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取. 国土资源遥感. 2021(01): 129-137 .
    8. 李宁,吕宗森,郭拯危. 联合变化检测与子带对消技术的SAR图像干扰抑制方法. 系统工程与电子技术. 2021(09): 2484-2492 .
    9. 郭山川,杜培军,蒙亚平,王欣,唐鹏飞,林聪,夏俊士. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报. 2021(10): 2127-2141 .
    10. 李宁,牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法. 雷达学报. 2020(01): 174-184 . 本站查看
    11. 吴瑞娟,何秀凤,王静. 结合像元级与对象级的滨海湿地变化检测方法. 地球信息科学学报. 2020(10): 2078-2087 .
    12. 冀广宇,董勇伟,卜运成,李焱磊,周良将,梁兴东. 基于目标相干性表征差异的多波段SAR相干变化检测方法. 雷达学报. 2018(04): 455-464 . 本站查看
    13. 牛世林,郭拯危,李宁,毋琳,赵建辉. 星载SAR水域分割研究进展与趋势分析. 聊城大学学报(自然科学版). 2018(02): 72-86 .

    Other cited types(16)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2996) PDF downloads(282) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint