Jin Tian, Song Yongping. Sparse Imaging of Building Layouts in Ultra-wideband Radar[J]. Journal of Radars, 2018, 7(3): 275-284. doi: 10.12000/JR18031
Citation: Hu Wenlong. Impact of Earth's Oblateness Perturbations on Geosynchronous SAR Data Focusing[J]. Journal of Radars, 2016, 5(3): 312-319. doi: 10.12000/JR15121

Impact of Earth's Oblateness Perturbations on Geosynchronous SAR Data Focusing

DOI: 10.12000/JR15121
Funds:

The National Ministries Foundation

  • Received Date: 2015-11-16
  • Rev Recd Date: 2016-03-31
  • Publish Date: 2016-06-28
  • In this study, we focus on the ultra-long integration of orbital perturbations of geosynchronous Synthetic Aperture Radar (SAR) for imaging. By deriving mathematical expressions for the Doppler rate and quadratic phase from orbital elements perturbated by oblateness or the J2 term of the non-spherical gravitational force of the Earth, we analyze the impact on SAR data focusing. Based on our results, we conclude that the quadratic phase will exceed 45, which is the defocusing threshold for imaging, after accumulation during a long integration time at the minute level. Because the potential for defocusing exists throughout nearly the entire satellite motion cycle, the SAR processor must carefully manage and compensate for the quadratic phase to avoid image degradations.

     

  • [1]
    Tomiyasu K. Synthetic aperture radar in geosynchronous orbit[C]. IEEE Antennas and Propagation Sympsium, Maryland, USA, 1978:42-45.
    [2]
    Tomiyasu K and Pacell J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(3):324-329.
    [3]
    Madsen S N, Edelstein W, DiDomenico L D, et al.. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Sydney, 2001:447-449.
    [4]
    Davide B, Hobbs S E, and Giuseppe O. Geosynchronous synthetic aperture radar:concept design, properties and possible applications[J]. Acta Astronautica, 2006, 59(1/5):149-156.
    [5]
    朱敏慧. 地球同步轨道星载合成孔径雷达概念研究[J]. 现代雷达, 2011, 33(5):1-4. Zhu Min-hui. The concepts about geosynchronous synthetic aperture radar[J]. Modern Radar, 2011, 33(5):1-4.
    [6]
    Ruiz-Rodon J, Broquetas A, Makhoul E, et al.. Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6379-6391.
    [7]
    Hobbs S, Mitchell C, Forte B, et al.. System design for geosynchronous synthetic aperture radar missions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12):7750-7763.
    [8]
    Wu Z, Huang L, Hu D, et al.. Azimuth resolution analysis in geosynchronous SAR with azimuth variance property[J]. Electronics Letters, 2014, 50(6):464-466.
    [9]
    Hu C, Zeng T, Zhu Y, et al.. The accurate resolution analysis in Geosynchronous SAR[C]. 20108th European Conference on Synthetic Aperture Radar, Aachen, 2010:1-4.
    [10]
    Wu Z, Huang L, Hu D, et al.. Ground resolution analysis based on gradient method in geosynchronous SAR[C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing, Kunming, 2013:1-4.
    [11]
    Bruno D, Hobbs S E, et al.. Radar imaging from geosynchronous orbit:temporal decorrelation aspects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7):2924-2929.
    [12]
    Hu C, Long T, Zeng T, et al.. The accurate focusing and resolution analysis method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3548-3563.
    [13]
    Zhao B, Qi X, Song H, et al.. An accurate range model based on the fourth-order Doppler parameters for geosynchronous SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):205-209.
    [14]
    Hu C, Long T, Liu Z, et al.. An improved frequency domain focusing method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5514-5528.
    [15]
    Tian Y, Hu C, Dong X, et al.. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):721-725.
    [16]
    Wadge G, Guarnie A M, Hobbs S E, et al.. Potential atmospheric and terrestrial aplications of a geosynchronous radar[C]. 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014:946-949.
    [17]
    Ruiz Rodon J, Broquetas A, Guarnieri A, et al.. Geosynchronous SAR focusing with atmospheric phase screen retrieval and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4397-4404.
    [18]
    Kou L, Xiang M, Wang X, et al.. Tropospheric effects on L-band geosynchronous circular SAR imaging[J]. IET Radar, Sonar Navigation, 2013, 7(6):693-701.
    [19]
    Jiang Mian, Hu Wen-long, and Ding Chi-biao. The effects of orbital perturbation on geosynchronous synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1106-1110.
    [20]
    Li F and Johnson W T K. Ambiguities in spaceborne synthetic aperture radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(3):389-396.
    [21]
    陈芳允. 卫星测控手册[M]. 北京:科学出版社, 1992:110-137. Chen Fang-yun. A Handbook for Satellite Measurement and Control[M]. Beijing:Science Press, 1992:110-137.
    [22]
    刘林. 人造地球卫星轨道力学[M]. 北京:高等教育出版社, 1992:91-193. Liu Lin. Orbital Mechanics of Artificial Satellites[M]. Beijing:Higher Education Press, 1992:91-193.
    [23]
    Curlander J C and Mcdonough R N. Synthetic Aperture Radar System and Signal Processing[M]. New York:John Wiley Sons Inc., 1991:155-207.
    [24]
    Cumming I G and Won F H. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation[M]. Norwood MA:Artech House Inc., 2005:567-584.
  • Relative Articles

    [1]CHAI Jiahui, LI Minglei, LI Min, WEI Dazhou, CHEN Guangyong. ResCalib: Joint LiDAR and Camera Calibration Based on Geometrically Supervised Deep Neural Networks[J]. Journal of Radars. doi: 10.12000/JR24233
    [2]XIAO Zhen, GU Yanfeng, JIANG Yanze, LI Xian. Full-waveform Small-footprint LiDAR Multi-target Echo Waveform Lightweight Detection by Spatio-temporal Coupling Models[J]. Journal of Radars. doi: 10.12000/JR24245
    [3]WEI Ning, LI Minglei, CHEN Guangyong, YE Fangzhou. Research on Aircraft Docking Guidance Localization Based on LiDAR Point Cloud Completion[J]. Journal of Radars. doi: 10.12000/JR25002
    [4]WANG Zhirui, KANG Yuzhuo, ZENG Xuan, WANG Yuelei, ZHANG Ting, SUN Xian. SAR-AIRcraft-1.0: High-resolution SAR Aircraft Detection and Recognition Dataset(in English)[J]. Journal of Radars, 2023, 12(4): 906-922. doi: 10.12000/JR23043
    [5]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [6]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [7]WANG Ruyi, ZHANG Hanqing, HAN Bing, ZHANG Yueting, GUO Jiayi, HONG Wen, SUN Wei, HU Wenlong. Multiangle SAR Dataset Construction of Aircraft Targets Based on Angle Interpolation Simulation[J]. Journal of Radars, 2022, 11(4): 637-651. doi: 10.12000/JR21193
    [8]LI Jianbing, WANG Xuesong. Review of Radar Characteristics and Sensing Technologies of Distributed Soft Target[J]. Journal of Radars, 2021, 10(1): 86-99. doi: 10.12000/JR20052
    [9]SHI Longfei, QUAN Yuan, FAN Jintao, MA Jiazhi. Communicational Radar Detection Technology[J]. Journal of Radars, 2020, 9(6): 1056-1063. doi: 10.12000/JR20088
    [10]SHEN Chun, GAO Hang, WANG Xuesong, LI Jianbing. Aircraft Wake Vortex Parameter-retrieval System Based on Lidar[J]. Journal of Radars, 2020, 9(6): 1032-1044. doi: 10.12000/JR20046
    [11]LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089
    [12]Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017
    [13]Hon Kaikwong, Chan Pakwai. Aircraft Wake Vortex Observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709-718. doi: 10.12000/JR17072
    [14]Li Jianbing, Gao Hang, Wang Tao, Wang Xuesong. A Survey of the Scattering Characteristics and Detection of Aircraft Wake Vortices[J]. Journal of Radars, 2017, 6(6): 660-672. doi: 10.12000/JR17068
    [15]Liu Junkai, Li Jianbing, Ma Liang, Chen Zhongkuan, Cai Yichao. Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry[J]. Journal of Radars, 2017, 6(6): 699-708. doi: 10.12000/JR17058
    [16]Li Gang, Xia Xiang-Gen. Parametric Sparse Representation and Its Applications to Radar Sensing[J]. Journal of Radars, 2016, 5(1): 1-7. doi: 10.12000/JR15126
    [17]Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058
    [18]Yan Zhao-ai, Hu Xiong, Guo Shang-yong, Cheng Yong-qiang, Guo Wen-jie, Pan Yi-sheng. Performance Analysis of Spaceborne Sodium Fluorescence Doppler Lidar[J]. Journal of Radars, 2015, 4(1): 99-106. doi: 10.12000/JR14140
    [19]Li Dao-jing, Zhang Qing-juan, Liu Bo, Yang Hong, Pan Jie. Key Technology and Implementation Scheme Analysis of Air-borne Synthetic Aperture Ladar[J]. Journal of Radars, 2013, 2(2): 143-151. doi: 10.3724/SP.J.1300.2013.13021
    [20]Wu Jin. On the Development of Synthetic Aperture Ladar Imaging[J]. Journal of Radars, 2012, 1(4): 353-360. doi: 10.3724/SP.J.1300.2012.20076
  • Cited by

    Periodical cited type(4)

    1. 潘浩然,马晖,胡敦法,刘宏伟. 基于涡旋电磁波新体制的雷达前视三维成像. 雷达学报. 2024(05): 1109-1122 . 本站查看
    2. 马晖,胡敦法,师竹雨,刘宏伟. 基于涡旋电磁波的雷达应用研究进展. 现代雷达. 2023(05): 27-41 .
    3. 石立华,冉峪舟,王建宝. 基于吸散一体隐身超构表面的透射型涡旋电磁波产生器设计. 陆军工程大学学报. 2022(01): 30-37 .
    4. 李海,毕金枝,孟凡旺,郑蕾. 机载柱形共形阵低空风切变风速估计方法. 雷达科学与技术. 2022(06): 651-657 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2454) PDF downloads(1005) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint