Citation: | Hu Wenlong. Impact of Earth's Oblateness Perturbations on Geosynchronous SAR Data Focusing[J]. Journal of Radars, 2016, 5(3): 312-319. doi: 10.12000/JR15121 |
[1] |
Tomiyasu K. Synthetic aperture radar in geosynchronous orbit[C]. IEEE Antennas and Propagation Sympsium, Maryland, USA, 1978:42-45.
|
[2] |
Tomiyasu K and Pacell J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, 21(3):324-329.
|
[3] |
Madsen S N, Edelstein W, DiDomenico L D, et al.. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Sydney, 2001:447-449.
|
[4] |
Davide B, Hobbs S E, and Giuseppe O. Geosynchronous synthetic aperture radar:concept design, properties and possible applications[J]. Acta Astronautica, 2006, 59(1/5):149-156.
|
[5] |
朱敏慧. 地球同步轨道星载合成孔径雷达概念研究[J]. 现代雷达, 2011, 33(5):1-4. Zhu Min-hui. The concepts about geosynchronous synthetic aperture radar[J]. Modern Radar, 2011, 33(5):1-4.
|
[6] |
Ruiz-Rodon J, Broquetas A, Makhoul E, et al.. Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6379-6391.
|
[7] |
Hobbs S, Mitchell C, Forte B, et al.. System design for geosynchronous synthetic aperture radar missions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12):7750-7763.
|
[8] |
Wu Z, Huang L, Hu D, et al.. Azimuth resolution analysis in geosynchronous SAR with azimuth variance property[J]. Electronics Letters, 2014, 50(6):464-466.
|
[9] |
Hu C, Zeng T, Zhu Y, et al.. The accurate resolution analysis in Geosynchronous SAR[C]. 20108th European Conference on Synthetic Aperture Radar, Aachen, 2010:1-4.
|
[10] |
Wu Z, Huang L, Hu D, et al.. Ground resolution analysis based on gradient method in geosynchronous SAR[C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing, Kunming, 2013:1-4.
|
[11] |
Bruno D, Hobbs S E, et al.. Radar imaging from geosynchronous orbit:temporal decorrelation aspects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7):2924-2929.
|
[12] |
Hu C, Long T, Zeng T, et al.. The accurate focusing and resolution analysis method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3548-3563.
|
[13] |
Zhao B, Qi X, Song H, et al.. An accurate range model based on the fourth-order Doppler parameters for geosynchronous SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):205-209.
|
[14] |
Hu C, Long T, Liu Z, et al.. An improved frequency domain focusing method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5514-5528.
|
[15] |
Tian Y, Hu C, Dong X, et al.. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):721-725.
|
[16] |
Wadge G, Guarnie A M, Hobbs S E, et al.. Potential atmospheric and terrestrial aplications of a geosynchronous radar[C]. 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014:946-949.
|
[17] |
Ruiz Rodon J, Broquetas A, Guarnieri A, et al.. Geosynchronous SAR focusing with atmospheric phase screen retrieval and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4397-4404.
|
[18] |
Kou L, Xiang M, Wang X, et al.. Tropospheric effects on L-band geosynchronous circular SAR imaging[J]. IET Radar, Sonar Navigation, 2013, 7(6):693-701.
|
[19] |
Jiang Mian, Hu Wen-long, and Ding Chi-biao. The effects of orbital perturbation on geosynchronous synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1106-1110.
|
[20] |
Li F and Johnson W T K. Ambiguities in spaceborne synthetic aperture radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(3):389-396.
|
[21] |
陈芳允. 卫星测控手册[M]. 北京:科学出版社, 1992:110-137. Chen Fang-yun. A Handbook for Satellite Measurement and Control[M]. Beijing:Science Press, 1992:110-137.
|
[22] |
刘林. 人造地球卫星轨道力学[M]. 北京:高等教育出版社, 1992:91-193. Liu Lin. Orbital Mechanics of Artificial Satellites[M]. Beijing:Higher Education Press, 1992:91-193.
|
[23] |
Curlander J C and Mcdonough R N. Synthetic Aperture Radar System and Signal Processing[M]. New York:John Wiley Sons Inc., 1991:155-207.
|
[24] |
Cumming I G and Won F H. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation[M]. Norwood MA:Artech House Inc., 2005:567-584.
|
[1] | CHAI Jiahui, LI Minglei, LI Min, WEI Dazhou, CHEN Guangyong. ResCalib: Joint LiDAR and Camera Calibration Based on Geometrically Supervised Deep Neural Networks[J]. Journal of Radars. doi: 10.12000/JR24233 |
[2] | XIAO Zhen, GU Yanfeng, JIANG Yanze, LI Xian. Full-waveform Small-footprint LiDAR Multi-target Echo Waveform Lightweight Detection by Spatio-temporal Coupling Models[J]. Journal of Radars. doi: 10.12000/JR24245 |
[3] | WEI Ning, LI Minglei, CHEN Guangyong, YE Fangzhou. Research on Aircraft Docking Guidance Localization Based on LiDAR Point Cloud Completion[J]. Journal of Radars. doi: 10.12000/JR25002 |
[4] | WANG Zhirui, KANG Yuzhuo, ZENG Xuan, WANG Yuelei, ZHANG Ting, SUN Xian. SAR-AIRcraft-1.0: High-resolution SAR Aircraft Detection and Recognition Dataset(in English)[J]. Journal of Radars, 2023, 12(4): 906-922. doi: 10.12000/JR23043 |
[5] | ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133 |
[6] | DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037 |
[7] | WANG Ruyi, ZHANG Hanqing, HAN Bing, ZHANG Yueting, GUO Jiayi, HONG Wen, SUN Wei, HU Wenlong. Multiangle SAR Dataset Construction of Aircraft Targets Based on Angle Interpolation Simulation[J]. Journal of Radars, 2022, 11(4): 637-651. doi: 10.12000/JR21193 |
[8] | LI Jianbing, WANG Xuesong. Review of Radar Characteristics and Sensing Technologies of Distributed Soft Target[J]. Journal of Radars, 2021, 10(1): 86-99. doi: 10.12000/JR20052 |
[9] | SHI Longfei, QUAN Yuan, FAN Jintao, MA Jiazhi. Communicational Radar Detection Technology[J]. Journal of Radars, 2020, 9(6): 1056-1063. doi: 10.12000/JR20088 |
[10] | SHEN Chun, GAO Hang, WANG Xuesong, LI Jianbing. Aircraft Wake Vortex Parameter-retrieval System Based on Lidar[J]. Journal of Radars, 2020, 9(6): 1032-1044. doi: 10.12000/JR20046 |
[11] | LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089 |
[12] | Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017 |
[13] | Hon Kaikwong, Chan Pakwai. Aircraft Wake Vortex Observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709-718. doi: 10.12000/JR17072 |
[14] | Li Jianbing, Gao Hang, Wang Tao, Wang Xuesong. A Survey of the Scattering Characteristics and Detection of Aircraft Wake Vortices[J]. Journal of Radars, 2017, 6(6): 660-672. doi: 10.12000/JR17068 |
[15] | Liu Junkai, Li Jianbing, Ma Liang, Chen Zhongkuan, Cai Yichao. Radar Target Detection Method of Aircraft Wake Vortices Based on Matrix Information Geometry[J]. Journal of Radars, 2017, 6(6): 699-708. doi: 10.12000/JR17058 |
[16] | Li Gang, Xia Xiang-Gen. Parametric Sparse Representation and Its Applications to Radar Sensing[J]. Journal of Radars, 2016, 5(1): 1-7. doi: 10.12000/JR15126 |
[17] | Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058 |
[18] | Yan Zhao-ai, Hu Xiong, Guo Shang-yong, Cheng Yong-qiang, Guo Wen-jie, Pan Yi-sheng. Performance Analysis of Spaceborne Sodium Fluorescence Doppler Lidar[J]. Journal of Radars, 2015, 4(1): 99-106. doi: 10.12000/JR14140 |
[19] | Li Dao-jing, Zhang Qing-juan, Liu Bo, Yang Hong, Pan Jie. Key Technology and Implementation Scheme Analysis of Air-borne Synthetic Aperture Ladar[J]. Journal of Radars, 2013, 2(2): 143-151. doi: 10.3724/SP.J.1300.2013.13021 |
[20] | Wu Jin. On the Development of Synthetic Aperture Ladar Imaging[J]. Journal of Radars, 2012, 1(4): 353-360. doi: 10.3724/SP.J.1300.2012.20076 |
1. | 潘浩然,马晖,胡敦法,刘宏伟. 基于涡旋电磁波新体制的雷达前视三维成像. 雷达学报. 2024(05): 1109-1122 . ![]() | |
2. | 马晖,胡敦法,师竹雨,刘宏伟. 基于涡旋电磁波的雷达应用研究进展. 现代雷达. 2023(05): 27-41 . ![]() | |
3. | 石立华,冉峪舟,王建宝. 基于吸散一体隐身超构表面的透射型涡旋电磁波产生器设计. 陆军工程大学学报. 2022(01): 30-37 . ![]() | |
4. | 李海,毕金枝,孟凡旺,郑蕾. 机载柱形共形阵低空风切变风速估计方法. 雷达科学与技术. 2022(06): 651-657 . ![]() |