Citation: | Li Lian-lin, Zhou Xiao-yang, Cui Tie-jun. Perspectives on Theories and Methods of Structural Signal Processing[J]. Journal of Radars, 2015, 4(5): 491-502. doi: 10.12000/JR15111 |
[1] |
李廉林, 李芳. 稀疏信号处理讲义[M]. 北京大学内部讲义, 2015. Li Lian-lin and Li Fang. Lecture on Sparse Signal Processing (Preprint)[M]. Peking University, 2015.
|
[2] |
Elad M.Sparse and redundant representation modelingwhat next?[J]. IEEE Signal Processing Letters, 2012, 19(12): 922-928.
|
[3] |
Duarte M F and Eldar Y C. Structured compressed sensing: from theory to applications[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4053-4085.
|
[4] |
吴一戎. 稀疏微波成像理论、体制和方法研究, 国家973项目 申请书(项目首席科学家: 吴一戎, 中国科学院电子学研究 所), 2010. Wu Yi-rong. Sparse microwave imaging: theories, methods, and systems, The proposal submitted to the National Basic Research Program of China, Leading Scientist: Wu Yirong, Institute of Electronics, Chinese Academy of Sciences, 2010.
|
[5] |
Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
|
[6] |
Donoho D L. Neighborly polytopes and sparse solutions of underdetermined linear equations[J]. Preprint, 2005.
|
[7] |
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
|
[8] |
Donoho D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(7): 797-829.
|
[9] |
Donoho D L and Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of
|
[10] |
Sciences, 2003, 100(5): 2197-2202. Donoho D L and Elad M. On the stability of the basis pursuit in the presence of noise[J]. Signal Processing, 2006, 86(3): 511-532.
|
[11] |
Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete respresentations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
|
[12] |
Donoho D L and Jared T. Sparse nonnegative solution of underdetermined linear equations by linear programming[J]. Proceedings of the National Academy of Sciences, 2005, 102(27): 9446-9451.
|
[13] |
Donoho D L and Tanner J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913-924.
|
[14] |
Donoho D L and Tsaig Y. Fast solution of l1-norm minimization problems when the solution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812.
|
[15] |
Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
|
[16] |
Cands E J, Romberg J K, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
|
[17] |
Cands E J and Tao T.Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
|
[18] |
Prony R. Essai experimental et analytique sur les lois de la Dilatabilit_e des uideselastiques et sur celles de la Force expansive de la vapeur de l'eau et de la vapeur de l'alkool, a dierentes temperatures. J. de l' Ecole Polytechnique, Floreal et Prairial III, 1795, 1(2): 24-76.
|
[19] |
Tarantola A. Inverse Problem Theory and Method for Model Parameter Estimation[M]. SIAM Press.
|
[20] |
Jaynes E. Probability Theory: The Logic of Science[M]. Cambridge University Press, 2003.
|
[21] |
Carathodory C. ber den Variabilittsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen[J]. Mathematische Annalen, 1907, 64(1): 95-115.
|
[22] |
Carathodory C. ber den variabilittsbereich der fourier'schen konstanten von positiven harmonischen funktionen[J]. Rendiconti Del Circolo Matematico Di Palermo, 1911, 32(1): 193-217.
|
[23] |
Beurling A. Sur les integrales de Fourier absolument convergentes et leur application a une transformation fonctionelle[C]. In Proc. Scandinavian Math. Congress, Helsinki, Finland, 1938.
|
[24] |
Claerbout J F and Muir F. Robust modeling of erratic data[J]. Geophysics, 1973, 38(5): 826-844.
|
[25] |
Taylor H, Banks S, and McCoy J. Deconvolution with the l1 norm[J]. Geophysics, 1979, 44(1): 39-52.
|
[26] |
Santosa F and Symes W W. Linear inversion of bandlimited reflection seismograms[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(4): 1307-1330.
|
[27] |
Santosa F and Symes W. Inversion of impedance profile from band-limited data[C]. International Geoscience and Remote Sensing Symposium, 1983.
|
[28] |
Tibshirani R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, Series B, 1996, 58(1): 267-288.
|
[29] |
Chen S,Donoho D,and Saunders M.Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61.
|
[30] |
Samadi S, Cetin M, and Masnadi-Shirazi M. Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar Navigation, 2011, 5(2): 182-193.
|
[31] |
Soldovieri F, Solimene R, and Ahmad F. Sparse tomographic inverse scattering approach for through-the wall radar imaging[J].IEEE Transactions on Instrumentation Measurement, 2012, 61(12): 3340-3350.
|
[32] |
Oliveri G, Rocca P, and Massa A. A bayesian-compressivesampling- based inversion for imaging sparse scatterers[J]. IEEE Transactions on Geoscience Remote Sensing, 2011, 49(10): 3993-4006.
|
[33] |
Desmal A and Bagci H. Shrinkage-thresholding enhanced Born iterative method for solving 2D inverse electromagnetic scattering problem[J]. IEEE Transactions on Antennas Propagation, 2014, 62(7): 3878-3884.
|
[34] |
Solimene R, Ahmad F, and Soldovieri F. A novel CSTSVD strategy to perform data reduction in linear inverse scattering problems[J]. IEEE Geoscience Remote Sensing Letters, 2012, 9(5): 881-885.
|
[35] |
Winters D W, Van Veen B D, and Hagness S C. A sparsity regularization approach to the electromagnetic inverse scattering problem.[J]. IEEE Transactions on Antennas Propagation, 2010, 58(1): 145-154.
|
[36] |
Huang Q, Qu L, Wu B, et al.. UWB through-wall imaging based on compressive sensing[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(3): 1408-1415.
|
[37] |
Yoon Y S and Amin M G. Through-the-wall radar imaging using compressive sensing along temporal frequency domain[C]. 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2010: 2806-2809.
|
[38] |
Leigsnering M, Ahmad F, Amin M G, et al.. Compressive sensing based specular multipath exploitation for throughthe- wall radar imaging[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013: 6004-6008.
|
[39] |
Zhu X X and Bamler R. Super resolving SAR tomography for multidimensional imaging of urban areas: compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51-58.
|
[40] |
向寅. 压缩采样、稀疏约束成像及等效辐射源无相位逆散 射[D]. [博士论文] , 中国科学院研究生院, 2010. Xiang Yin. Study of compressed sampling, sparse imaging its applications in phaseless inverse scattering[D]. [Ph.D. dissertation] , University of Chinese Academy of Sciences, 2010.
|
[41] |
张文吉. 电磁逆散射成像方法及压缩感知理论在成像中的应 用[D]. [博士论文] , 中国科学院研究生院, 2009. Wenji Zhang, Study of fast methods of electromagnetic inverse scattering and compressive electromagnetic imaging[D]. [Ph.D. dissertation] , University of Chinese Academy of Sciences, 2009.
|
[42] |
刘艳丽. 基于抛物线方程的电波传播问题及电离层成像研 究[D]. [博士论文] , 中国科学院研究生院, 2009. Yanli Liu, Study of parabolic equations based radio wave propagation and its applications in ionosphere tomography[D]. [Ph.D. dissertation] , University of Chinese Academy of Sciences, 2009.
|
[43] |
Xu G, Xing M D, Xia X G, et al.. Sparse regularization of interferometric phase and amplitude for InSAR image formation based on bayesian representation[J]. IEEE Transactions on Geoscience Remote Sensing, 2015, 53(4): 2123-2136.
|
[44] |
Zhang L, Qiao Z J, Xing M, et al.. High-resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience Remote Sensing, 2011, 49(11): 4630-4651.
|
[45] |
石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1078. Guangming Shi, Danhua Liu, Dahua Gao, et al.. Theory of compressive sensing and its recent progress, Recent progress on theory and compressive sensing[J]. Chinese Journal of Electronics, 2009, 37(5): 1070-1078.
|
[46] |
Xu Z, Chang X, Xu F, et al.. L1/2 regularization: a thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks Learning Systems, 2012, 23(7): 1013-1027.
|
[47] |
黄晓涛, 杨俊刚, 金添. 压缩感知雷达成像[M]. 北京: 科学出 版社, 2014. Huang Xiao-tao, Yang Jun-gang, and Jin Tian. Compressed Radar Imaging[M]. Science Press, 2014.
|
[48] |
Mallat S and Zhang Z. Matching pursuit in a timefrequency dictionary[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
|
[49] |
Needell D and Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied Computational Harmonic Analysis, 2008, 26(12): 93-100.
|
[50] |
Nesterov Y.Introductory Lectures on Convex Optimization: A Basic Course[M]. Kluwer Academic Publishers, 2004.
|
[51] |
Wainwright M J. Structured regularizers for highdimensional problems: statistical and computational issues[J]. Social Science Electronic Publishing, 2014, 1(1): 233-253.
|
[52] |
Donoho D and Tsaig Y. Fast solution of l1 norm minimization problems when thesolution may be sparse[J]. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812.
|
[53] |
Chen S S, Donoho D L, and Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159.
|
[54] |
Koh K, Kim S J, and Boyd S. An interior-point method for large-scale l1 -regularized logistic regression[J]. Journal of Machine Learning Research, 2007, 8(3): 1519-1555.
|
[55] |
Shevade S K and Keerthi S S. A simple and efficient algorithm for gene selection using sparse logistic regression[J]. Bioinformatics, 2003, 19(17): 2246-2253.
|
[56] |
Hui Z and Trevor H. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.
|
[57] |
Cands E J, Wakin M B, and Boyd S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis Applications, 2008, 14: 877-905.
|
[58] |
Tosic I and Froccard P. Dictionary learning[J]. IEEE Signal Processing Magazine, 2011: 27-38.
|
[59] |
Aharon M, Elad M, and Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
|
[60] |
Van den Berg E, Schmidt M, Friedlander M P, et al.. Group sparsity via linear-time projections[R]. Technical Report, University of British Columbia, 2008, Technical Report Number TR-2008, 2008.
|
[61] |
Friedman J, Hastie T, and Tibshirani R. A note on the group lasso and a sparse group lasso[J]. Preprint arXiv:1001:0736v1, 2010.
|
[62] |
Huang J and Zhang T. The benefit of group sparsity[J]. Annals of Statistics, 2009, 38(4): 1978-2004.
|
[63] |
Huang J, Zhang T, and Metaxas D. Learning with structured sparsity[J]. Journal of Machine Learning Research, 2011, 12(7): 3371-3412.
|
[64] |
Jacob L and Obozinski G. Group lasso with overlaps and graph lasso[C]. Proceedings of the 26th International Conference on Machine Learning, 2009.
|
[65] |
Jenatton R, Audibert J Y, and Bach F. Structured variable selection with sparsity-inducing norms[J]. Journal of Machine Learning Research, 2011, 12(10): 2777-2824.
|
[66] |
Baraniuk R G, Cevher V, Duarte M F, et al.. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
|
[67] |
He L and Carin L. Exploiting structure in wavelet-based bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3488-3497.
|
[68] |
He L, Chen H, and Carin L. Tree-structured compressive sensing with variational bayesian analysis[J]. IEEE Signal Processing Letters, 2010, 17(3): 233-236.
|
[69] |
Eldar Y C, Kuppinger P, and Blcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
|
[70] |
Yuan M and Lin Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society, 2006, 68(1): 49-67.
|
[71] |
Robert T, Michael S, Saharon R, et al.. Sparsity and smoothness via the fused lasso[J]. Journal of the Royal Statistical Society, 2005, 67(1): 91-108.
|
[72] |
Amit Y, Fink M, Srebro N, et al.. Uncovering shared structures in multiclass classification[C]. Twenty-fourth International Conference on Machine Learning, 2007: 17-24.
|
[73] |
Gilboa G and Osher S. Nonlocal operators with applications to image processing[J]. SIAM Journal on Multiscale Modeling Simulation, 2008, 7(3): 1005-1028.
|
[74] |
Bach F and Obozinski G. Structured sparsity through convex optimization[J]. Statistical Science, 2011, 27(4): 450-468.
|
[75] |
Peleg T, Eldar Y C, and Elad M. Exploiting statistical dependencies in sparse representations for signal recovery[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2286-2303.
|
[76] |
Dremeau A, Herzet C, and Daudet L. Boltzmann machine and mean-field approximation for structured sparse decompositions[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3425-3438.
|
[77] |
Marlin B M and Murphy K P. Sparse Gaussian graphical models with unknown block structure[C]. ICML'09 Proceedings of the 26th International Conference on Machine Learning, 2009: 705-712.
|
[78] |
Marlin B M, Schmidt M, and Murphy K P. Group sparse priors for covariance estimation[C]. Appears in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 2012: 383-392.
|
[79] |
Pournaghi R and Wu X. Coded acquisition of high frame rate video[J]. IEEE Transactions on Image Processing, 2013, 23(12): 5670-5682.
|
[80] |
Donoho D and Tanner J. Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing[J]. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 2009, 367(1906): 4273-4293.
|
[81] |
Cands E J and Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2008, 9(6): 717-772.
|
[82] |
Candes E J and Plan Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2009, 98(6): 925-936.
|
[83] |
Hardle W, Hall P, and Ichimura H. Optimal smoothing in single-index models[J]. The Annals of Statistics, 1993, 21(1): 157-178.Hristache M and Spokoiny V. Direct
|
[84] |
estimation of the index coefficient in a single-index model[J]. The Annals of Statistics, 2001, 29(3): 595-623.
|
[85] |
Gopi S, Netrapalli P, Jain P, et al.. One-bit compressed sensing: provable support and vector recovery[C]. In International Conference on Machine Learning, 2013.
|
[86] |
Jacques L, Laska J, Boufounos P, et al.. Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors[J]. arXiv:1104.3160, 2011.
|
[87] |
Plan Y and Vershynin R. One-bit compressed sensing by linear programming[J]. Communications on Pure Applied Mathematics, 2013, 66(8): 1275-1297.
|
[88] |
Plan Y and Vershynin R. Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach[J]. IEEE Transactions on Information Theory, 2013, 59(1): 482-494.
|
[89] |
Bahmani S and Romberg J. Efficient compressive phase retrieval with constrained sensing vectors. arXiv: 1507. 08254v1, 2015.
|
[90] |
Cevher V, Becker S, and Schmidt M. Convex optimization for big data: Scalable, randomized, and Parallel algorithms for big data analytics[J]. IEEE Signal Processing Magazine, 2014, 31(5): 32-43.
|
[91] |
Slavakis K, Giannakis G B, and Mateos G. Modeling and Optimization for Big Data Analytics: (Statistical) learning tools for our era of data deluge[J]. IEEE Signal Processing Magazine, 2014, 31(5): 18-31.
|
[92] |
Yuan G X, Chang K W, Hsieh C J, et al.. A comparison of optimization methods and software for large-scale L1- regularized linear classification[J]. Journal of Machine Learning Research, 2010, 11(2): 3183-3234.
|
[93] |
Bertsekas D P and Tsitsiklis J N. Parallel and Distributed Computation: Numerical Methods[M]. Prentice Hall, 1989.
|
[94] |
Nemirovski A, Juditsky A, Lan G, et al.. Robust stochastic approximation approach to stochastic programming[J].
|
[95] |
SIAM Journal on Optimization, 2009, 19(4): 1574-1609. Kushner H and Yin G. Stochastic Approximation Algorithms and Applications[M]. New York: Springer, 1997.
|
[96] |
Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems[J]. SIAM Journal on Optimization, 2012, 22(2): 341-362.
|
[97] |
Richtrik P and Tak M. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[J]. Mathematical Programming, 2014, 144(1): 1-38.
|
[98] |
Johnson R and Zhang T. Accelerating stochastic gradient descent using predictive variance reduction[C]. Advances in Neural Information Processing Systems, 2013, 26: 315-323.
|
[99] |
Boyd S, Parikh N, Chu E, et al.. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.
|