Volume 4 Issue 1
Apr.  2015
Turn off MathJax
Article Contents
Hu Ke-bin, Zhang Xiao-ling, Shi Jun, Wei Shun-jun. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization[J]. Journal of Radars, 2015, 4(1): 60-69. doi: 10.12000/JR15007
Citation: Hu Ke-bin, Zhang Xiao-ling, Shi Jun, Wei Shun-jun. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization[J]. Journal of Radars, 2015, 4(1): 60-69. doi: 10.12000/JR15007

A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

DOI: 10.12000/JR15007
  • Received Date: 2015-01-16
  • Rev Recd Date: 2015-03-05
  • Publish Date: 2015-02-28
  • Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR) images. The autofocus Back Projection (BP) algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC) are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

     

  • loading
  • [1]
    Sherwin C W, Ruina J P, and Rawcliffe R D. Some early developments in synthetic aperture radar[J]. IRE Transactions on Military Electronics, 1962, MIL-6(2): 111-115.
    [2]
    Weib M, Ender H G, and Gierull C H. Foreword to the special issue on scientific and technological progress of synthetic aperture radar (SAR)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4363-4365.
    [3]
    M J J, Wit De, Meta A, et al.. Modified range-Doppler processing for FM-CW synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 83-87.
    [4]
    Li Zhong-yu, Wu Jun-jie, Li Wen-chao, et al.. One-stationary bistatic side-looking SAR imaging algorithm based on extended Keystone transforms and nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 211-215.
    [5]
    Li Zhong-yu, Wu Jun-jie, Yi Qing-ying, et al.. An Omega-k imaging algorithm or translational variant bistatic SAR based on linearization theory[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 627-631.
    [6]
    Peters T M. Algorithm for fast back- and re-projection in computed tomography[J]. IEEE Transactions on Nulear Science, 1981, 28(4): 3641-3647.
    [7]
    Shi J, Ma L, and Zhang X L. Streaming BP for non-linear motion compensation SAR imaging based on GPU[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4): 2035-2050.
    [8]
    Fan Bang-kui, Ding Ze-gang, Gao Wen-bin, et al.. An improved motion compensation method for high resolution UAV SAR imaging[J]. Science China Information Sciences, 2014, 57: 122301-13.
    [9]
    Ouyang Y, Chong J S, Wu Y R, et al.. Simulation studies of internal waves in SAR images under different SAR and wind field conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1734-1743.
    [10]
    Ding Z G, Liu L S, Zeng T, et al.. Improved motion compensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4378-4387.
    [11]
    Kennedy T A. Strapdown inertial measurement units for motion compensation for synthetic aperture radars[J]. IEEE Aerospace and Electronic Systems Magazine, 1988, 3(10): 32-35.
    [12]
    Chen Tsung-lin. Design and analysis of a fault-tolerant coplanar gyro-free inertial measurement unit[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 201-212.
    [13]
    Li Jian-li, Fang Jian-cheng, and Ge Sam Shu-zhi. Kinetics and design of a mechanically dithered ring laser gyroscope position and orientation system[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(1): 210-220.
    [14]
    Kang C W, Cho N I, and Park C G. Approach to direct coning/sculling error compensation based on the sinusoidal modelling of IMU signal[J]. IET Radar, Sonar Navigation, 2013, 7(5): 527-534.
    [15]
    Ash J N. An autofocus method for backprjection imagery in synthetic aperture radar[J]. IET Geoscience and Remote Sensing Letters, 2012, 9(1): 104-108.
    [16]
    Kayanthara K, Rao S, and Sarkar T. Analysis of twodimensional conducting an dielectric bodies utilizing the conjugate gradient method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(4): 451-453.
    [17]
    Larry A. Minimization of functions having Lipschitz continuous first partial derivatives[J]. Pacific Journal of Mathematics, 1966, 16(1): 1-3.
    [18]
    Owens J D, Houston M, Luebke D, et al.. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5): 879-899.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3409) PDF downloads(1453) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint