Hu Ke-bin, Zhang Xiao-ling, Shi Jun, Wei Shun-jun. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization[J]. Journal of Radars, 2015, 4(1): 60-69. doi: 10.12000/JR15007
Citation: Hu Ke-bin, Zhang Xiao-ling, Shi Jun, Wei Shun-jun. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization[J]. Journal of Radars, 2015, 4(1): 60-69. doi: 10.12000/JR15007

A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

DOI: 10.12000/JR15007
  • Received Date: 2015-01-16
  • Rev Recd Date: 2015-03-05
  • Publish Date: 2015-02-28
  • Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR) images. The autofocus Back Projection (BP) algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC) are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

     

  • [1]
    Sherwin C W, Ruina J P, and Rawcliffe R D. Some early developments in synthetic aperture radar[J]. IRE Transactions on Military Electronics, 1962, MIL-6(2): 111-115.
    [2]
    Weib M, Ender H G, and Gierull C H. Foreword to the special issue on scientific and technological progress of synthetic aperture radar (SAR)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4363-4365.
    [3]
    M J J, Wit De, Meta A, et al.. Modified range-Doppler processing for FM-CW synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 83-87.
    [4]
    Li Zhong-yu, Wu Jun-jie, Li Wen-chao, et al.. One-stationary bistatic side-looking SAR imaging algorithm based on extended Keystone transforms and nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 211-215.
    [5]
    Li Zhong-yu, Wu Jun-jie, Yi Qing-ying, et al.. An Omega-k imaging algorithm or translational variant bistatic SAR based on linearization theory[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 627-631.
    [6]
    Peters T M. Algorithm for fast back- and re-projection in computed tomography[J]. IEEE Transactions on Nulear Science, 1981, 28(4): 3641-3647.
    [7]
    Shi J, Ma L, and Zhang X L. Streaming BP for non-linear motion compensation SAR imaging based on GPU[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4): 2035-2050.
    [8]
    Fan Bang-kui, Ding Ze-gang, Gao Wen-bin, et al.. An improved motion compensation method for high resolution UAV SAR imaging[J]. Science China Information Sciences, 2014, 57: 122301-13.
    [9]
    Ouyang Y, Chong J S, Wu Y R, et al.. Simulation studies of internal waves in SAR images under different SAR and wind field conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1734-1743.
    [10]
    Ding Z G, Liu L S, Zeng T, et al.. Improved motion compensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4378-4387.
    [11]
    Kennedy T A. Strapdown inertial measurement units for motion compensation for synthetic aperture radars[J]. IEEE Aerospace and Electronic Systems Magazine, 1988, 3(10): 32-35.
    [12]
    Chen Tsung-lin. Design and analysis of a fault-tolerant coplanar gyro-free inertial measurement unit[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 201-212.
    [13]
    Li Jian-li, Fang Jian-cheng, and Ge Sam Shu-zhi. Kinetics and design of a mechanically dithered ring laser gyroscope position and orientation system[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(1): 210-220.
    [14]
    Kang C W, Cho N I, and Park C G. Approach to direct coning/sculling error compensation based on the sinusoidal modelling of IMU signal[J]. IET Radar, Sonar Navigation, 2013, 7(5): 527-534.
    [15]
    Ash J N. An autofocus method for backprjection imagery in synthetic aperture radar[J]. IET Geoscience and Remote Sensing Letters, 2012, 9(1): 104-108.
    [16]
    Kayanthara K, Rao S, and Sarkar T. Analysis of twodimensional conducting an dielectric bodies utilizing the conjugate gradient method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(4): 451-453.
    [17]
    Larry A. Minimization of functions having Lipschitz continuous first partial derivatives[J]. Pacific Journal of Mathematics, 1966, 16(1): 1-3.
    [18]
    Owens J D, Houston M, Luebke D, et al.. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5): 879-899.
  • Relative Articles

    [1]CAO Jingyi, ZHANG Yang, YOU Ya’nan, WANG Yamin, YANG Feng, REN Weijia, LIU Jun. Target Recognition Method Based on Graph Structure Perception of Invariant Features for SAR Images[J]. Journal of Radars, 2025, 14(2): 366-388. doi: 10.12000/JR24125
    [2]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [3]LIU Yuzhou, CAI Tianyi, LI Yachao, SONG Xuan, WANG Xuanqi, AN Peiyun. A Range and Azimuth Combined Two-dimensional NCS Algorithm for Spaceborne-missile Bistatic Forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202-1214. doi: 10.12000/JR23144
    [4]CHEN Jianlai, XIONG Yi, XU Gang, ZHANG Junchao, YANG Degui, LIANG Buge. Nonlinear Trajectory Synthetic Aperture Radar Imaging and Autofocus Algorithm Based on Sub-image Nonlinear Chirp Scaling[J]. Journal of Radars, 2022, 11(6): 1098-1109. doi: 10.12000/JR22171
    [5]HU Xiaoning, WANG Bingnan, XIANG Maosheng, WANG Zhongbin. InSAR Elevation Inversion Method Based on Backprojection Model with External DEM[J]. Journal of Radars, 2021, 10(3): 391-401. doi: 10.12000/JR20144
    [6]LUO Ying, NI Jiacheng, ZHANG Qun. Synthetic Aperture Radar Learning-imaging Method Based onData-driven Technique and Artificial Intelligence[J]. Journal of Radars, 2020, 9(1): 107-122. doi: 10.12000/JR19103
    [7]HU Cheng, DENG Yunkai, TIAN Weiming, ZENG Tao. A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images[J]. Journal of Radars, 2019, 8(6): 831-840. doi: 10.12000/JR19073
    [8]Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System[J]. Journal of Radars, 2016, 5(4): 333-349. doi: 10.12000/JR16089
    [9]Zhang Zhe, Zhang Bingchen, Hong Wen, Wu Yirong. Accelerated Sparse Microwave Imaging Phase Error Compensation Algorithm Based on Combination of SAR Raw Data Simulator and Map-drift Autofocus Algorithm[J]. Journal of Radars, 2016, 5(1): 25-34. doi: 10.12000/JR15055
    [10]Zhan Xue-li, Wang Yan-fei, Wang Chao, Li He-ping. A Digital Dechirp Approach for Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(4): 474-480. doi: 10.12000/JR14117
    [11]Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [12]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [13]Zhou Hui, Zhao Feng-jun, Yu Wei-dong, Yang Jian. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English)[J]. Journal of Radars, 2015, 4(3): 265-275. doi: 10.12000/JR15024
    [14]Zhao Yu-lu, Zhang Qun-ying, Li-Chao, Ji Yi-cai, Fang Guang-you. Vibration Error Analysis and Motion Compensation of Video Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(2): 230-239. doi: 10.12000/JR14153
    [15]Li Hai-ying, Zhang Shan-shan, Li Shi-qiang, Zhang Hua-chun. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar[J]. Journal of Radars, 2014, 3(3): 320-325. doi: 10.3724/SP.J.1300.2014.13060
    [16]Zhang Hong-min, Jin Guo-wang, Xu qing, Li Xiang-ying. Accurate Positioning with Stereo SAR Images and One Ground Control Point[J]. Journal of Radars, 2014, 3(1): 85-91. doi: 10.3724/SP.J.1300.2014.13138
    [17]Yu Wei-dong, Yang Ru-liang, Deng Yun-kai, Zhao Feng-jun, Lei Hong. The Load Design and Implementation of HJ-1-C Space-borne SAR[J]. Journal of Radars, 2014, 3(3): 256-265. doi: 10.3724/SP.J.1300.2014.14020
    [18]Gao Yang, Yu Wei-dong, Feng Jin, Zheng Shi-chao, Yang Liang. A SAR Back Projection Autofocusing Algorithm Based on Legendre Approximation[J]. Journal of Radars, 2014, 3(2): 176-182. doi: 10.3724/SP.J.1300.2014.14011
    [19]Tian Xue, Liang Xing-dong, Li Yan-lei, Dong Yong-wei. High-precision Motion Compensation Method Based on the Subaperture Envelope Error Correction for SAR[J]. Journal of Radars, 2014, 3(5): 583-590. doi: 10.3724/SP.J.1300.2014.14068
    [20]Chong Jin-song, Zhou Xiao-zhong. Survey of Study on Internal Waves Detection in Synthetic Aperture Radar Image[J]. Journal of Radars, 2013, 2(4): 406-421. doi: 10.3724/SP.J.1300.2013.13012
  • Cited by

    Periodical cited type(3)

    1. 曾乐天,梁毅,李震宇,怀园园,邢孟道. 一种加速时域成像算法及其自聚焦方法. 西安电子科技大学学报. 2017(01): 1-5+70 .
    2. 张柘,张冰尘,洪文,吴一戎. 结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法. 雷达学报. 2016(01): 25-34 . 本站查看
    3. 杨箫,王军锋. 改进的DPCA和ATI技术及其对比. 现代电子技术. 2015(20): 1-4 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.9 %FULLTEXT: 9.9 %META: 80.1 %META: 80.1 %PDF: 10.0 %PDF: 10.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.9 %其他: 16.9 %其他: 0.7 %其他: 0.7 %Boydton: 0.0 %Boydton: 0.0 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Kao-sung: 0.0 %Kao-sung: 0.0 %Mariano Comense: 0.1 %Mariano Comense: 0.1 %Meda: 0.0 %Meda: 0.0 %Pakistan: 0.1 %Pakistan: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %Singapore: 0.1 %Singapore: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.7 %[]: 0.7 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %中卫: 0.3 %中卫: 0.3 %云浮: 0.1 %云浮: 0.1 %佛山: 0.1 %佛山: 0.1 %信阳: 0.0 %信阳: 0.0 %六安: 0.0 %六安: 0.0 %包头: 0.1 %包头: 0.1 %北京: 14.0 %北京: 14.0 %北京市: 0.0 %北京市: 0.0 %十堰: 0.3 %十堰: 0.3 %南京: 0.6 %南京: 0.6 %南宁: 0.3 %南宁: 0.3 %南昌: 0.3 %南昌: 0.3 %南通: 0.1 %南通: 0.1 %南阳: 0.0 %南阳: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.0 %台州: 0.0 %合肥: 0.1 %合肥: 0.1 %吴忠: 0.0 %吴忠: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %塔斯卡卢萨: 0.0 %塔斯卡卢萨: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.0 %安康: 0.0 %宜春: 0.0 %宜春: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.9 %广州: 0.9 %开封: 0.0 %开封: 0.0 %张家口: 0.4 %张家口: 0.4 %成都: 1.5 %成都: 1.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.1 %扬州: 0.1 %承德: 0.0 %承德: 0.0 %抚州: 0.0 %抚州: 0.0 %新加坡: 0.0 %新加坡: 0.0 %无锡: 0.3 %无锡: 0.3 %昆明: 0.1 %昆明: 0.1 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.8 %杭州: 1.8 %柳州: 0.0 %柳州: 0.0 %桂林: 0.1 %桂林: 0.1 %武汉: 0.5 %武汉: 0.5 %汕头: 0.1 %汕头: 0.1 %江门: 0.0 %江门: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.3 %深圳: 0.3 %温州: 0.0 %温州: 0.0 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.3 %濮阳: 0.3 %焦作: 0.0 %焦作: 0.0 %玉林: 0.0 %玉林: 0.0 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.0 %石家庄市: 0.0 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %红河: 0.0 %红河: 0.0 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 17.9 %芒廷维尤: 17.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %苏州市: 0.0 %苏州市: 0.0 %莱芜: 0.0 %莱芜: 0.0 %衡水: 0.0 %衡水: 0.0 %西宁: 27.5 %西宁: 27.5 %西安: 1.7 %西安: 1.7 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.1 %运城: 0.1 %连云港: 0.2 %连云港: 0.2 %通化: 0.0 %通化: 0.0 %通辽: 0.0 %通辽: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %银川: 0.0 %银川: 0.0 %锡林郭勒盟: 0.0 %锡林郭勒盟: 0.0 %锦州: 0.0 %锦州: 0.0 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.7 %长沙: 1.7 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.3 %青岛: 0.3 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他BoydtonChinaIndiaKao-sungMariano ComenseMedaPakistanRussian FederationSingaporeUnited States[]上海东莞中卫云浮佛山信阳六安包头北京北京市十堰南京南宁南昌南通南阳台北台州合肥吴忠呼和浩特咸阳哈尔滨哥伦布嘉兴塔斯卡卢萨大连天津太原宁波安康宜春常州常德广州开封张家口成都成都市新都区扬州承德抚州新加坡无锡昆明朝阳杭州柳州桂林武汉汕头江门沈阳洛阳济南淮安深圳温州渭南湖州湘潭滨州漯河濮阳焦作玉林珠海石家庄石家庄市福州秦皇岛红河纽约绍兴绵阳美国伊利诺斯芝加哥芒廷维尤芝加哥苏州苏州市莱芜衡水西宁西安贵阳运城连云港通化通辽邯郸郑州重庆银川锡林郭勒盟锦州镇江长春长沙长治阳泉青岛香港特别行政区齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3512) PDF downloads(1457) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint