Volume 7 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
Huang Rui, Du Xiaoyong, Hu Weidong. Approximate Maximum Likelihood Estimator of Multi-target Motion Parameters for Orthogonal Frequency Division Multiplexing Radar[J]. Journal of Radars, 2018, 7(4): 507-513. doi: 10.12000/JR17116
Citation: Huang Rui, Du Xiaoyong, Hu Weidong. Approximate Maximum Likelihood Estimator of Multi-target Motion Parameters for Orthogonal Frequency Division Multiplexing Radar[J]. Journal of Radars, 2018, 7(4): 507-513. doi: 10.12000/JR17116

Approximate Maximum Likelihood Estimator of Multi-target Motion Parameters for Orthogonal Frequency Division Multiplexing Radar

doi: 10.12000/JR17116
Funds:  The National Natural Science Foundation of China (61471374)
  • Received Date: 2017-12-05
  • Rev Recd Date: 2018-02-05
  • Publish Date: 2018-08-28
  • To detect multiple targets on a phase-coded Orthogonal Frequency Division Multiplexing (OFDM) radar, this paper proposes a parameter estimation method based on channel separation and maximum likelihood principle. First, the multi-channel signals were separated because of the orthogonality of the OFDM system, and then the separated signals were correlated with the phase-coded reference signal in the fast time domain to acquire a 1-D range profile from each channel. Subsequently, Keystone transform was used to correct the effect of the coupling between Doppler shift of the subcarrier and the slow time domain. Simultaneously, coherent accumulation was conducted jointly in the slow time and subcarrier domains to obtain a 2-D range-Doppler spectrum. Using CLEAN technique, the peaks of this spectrum were examined to obtain the range cells and velocities of each target. Using these parameters as the initial values, the likelihood function was maximized using Newton’s iterative algorithm to yield an approximate maximum likelihood estimator of the motion parameters. Simulation results demonstrate that the proposed algorithm outperforms the traditional Keystone-based estimation algorithm both in computational complexity and parameter estimation accuracy. The algorithm improved the input SNR by approximately 4 dB under the same root mean square error, and the mean square error approached the Cramer-Rao lower bound.

     

  • loading
  • [1]
    Mazahir S, Chaaban A, Elgala H, et al.. Effective information rates of single-carrier and multi-carrier modulation schemes for bandwidth constrained IM/DD systems[C]. Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6. DOI: 10.1109/ICC.2017.7997325
    [2]
    Shi C G, Wang F, Sellathurai M, et al. Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1316–1330. DOI: 10.1109/TSP.2017.2770086
    [3]
    Patel V V and Patil R N. Minimization of PAPR in OFDM system using IDWT/DWT, clipping and filtering combined with huffman coding method[C]. Proceedings of the 2013 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2013: 250–254. DOI: 10.1109/iccsp.2013.6577053
    [4]
    Omar S M, Kassem F, Mitri R, et al.. A novel barker code algorithm for resolving range ambiguity in high PRF radars[C]. Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 2015: 81–84. DOI: 10.1109/EuRAD.2015.7346242
    [5]
    霍凯, 赵晶晶. OFDM新体制雷达研究现状与发展趋势[J]. 电子与信息学报, 2015, 37(11): 2776–2789. DOI: 10.11999/JEIT150335

    Huo Kai and Zhao Jing-jing. The development and prospect of the new OFDM radar[J]. Journal of Electronics&Information Technology, 2015, 37(11): 2776–2789. DOI: 10.11999/JEIT150335
    [6]
    Lellouch G, Mishra A K, and Inggs M. Design of OFDM radar pulses using genetic algorithm based techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1953–1966. DOI: 10.1109/TAES.2016.140671
    [7]
    Liu Y J, Liao G S, Yang Z W, et al. Design of integrated radar and communication system based on MIMO-OFDM waveform[J]. Journal of Systems Engineering and Electronics, 2017, 28(4): 669–680. DOI: 10.21629/JSEE.2017.04.06
    [8]
    张卫, 顾红, 苏卫民. 基于Keystone变换的OFDM信号距离走动校正方法[J]. 数据采集与处理, 2013, 28(4): 421–424. DOI: 10.3969/j.issn.1004-9037.2013.04.006

    Zhang Wei, Gu Hong, and Su Wei-min. Range walk correction of OFDM signal radar with Keystone transform[J]. Journal of Data Acquisition and Processing, 2013, 28(4): 421–424. DOI: 10.3969/j.issn.1004-9037.2013.04.006
    [9]
    Lellouch G, Mishra A, and Inggs M. Impact of the Doppler modulation on the range and Doppler processing in OFDM radar[C]. 2014 IEEE Radar Conference, Cincinnati, OH, USA, 2014: 803–808. DOI: 10.1109/RADAR.2014.6875700
    [10]
    李升远, 张馨恬, 唐世阳. 采用OFDM-LFM的MIMO雷达高速目标波形设计[J]. 西安电子科技大学学报, 2018, 45(3): 8–13. DOI: 10.3969/j.issn.1001-2400.2018.03.002

    Li Sheng-yuan, Zhang Xin-tian, and Tang Shi-yang. MIMO radar waveform design via OFDM-LFM for high speed target[J]. Journal of Xidian University, 2018, 45(3): 8–13. DOI: 10.3969/j.issn.1001-2400.2018.03.002
    [11]
    Liu L, Zhou F, Tao M L, et al. A novel method for multi-targets ISAR imaging based on particle swarm optimization and modified CLEAN technique[J]. IEEE Sensors Journal, 2016, 16(1): 97–108. DOI: 10.1109/JSEN.2015.2478808
    [12]
    霍凯. 基于OFDM新体制雷达信号的微动目标特征提取研究[D]. [博士论文], 国防科学技术大学, 2011

    Huo Kai. Research on feature extraction for target with micro-motion based on new OFDM radar signals[D]. [Ph.D. dissertation], National University of Defense Technology, 2011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2248) PDF downloads(309) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint