基于角度引导Transformer融合网络的多站协同目标识别方法

郭帅 陈婷 王鹏辉 丁军 严俊坤 王英华 刘宏伟

郭帅, 陈婷, 王鹏辉, 等. 基于角度引导Transformer融合网络的多站协同目标识别方法[J]. 雷达学报, 2023, 12(3): 516–528. doi: 10.12000/JR23014
引用本文: 郭帅, 陈婷, 王鹏辉, 等. 基于角度引导Transformer融合网络的多站协同目标识别方法[J]. 雷达学报, 2023, 12(3): 516–528. doi: 10.12000/JR23014
GUO Shuai, CHEN Ting, WANG Penghui, et al. Multistation cooperative radar target recognition based on an angle-guided transformer fusion network[J]. Journal of Radars, 2023, 12(3): 516–528. doi: 10.12000/JR23014
Citation: GUO Shuai, CHEN Ting, WANG Penghui, et al. Multistation cooperative radar target recognition based on an angle-guided transformer fusion network[J]. Journal of Radars, 2023, 12(3): 516–528. doi: 10.12000/JR23014

基于角度引导Transformer融合网络的多站协同目标识别方法

DOI: 10.12000/JR23014
基金项目: 国家自然科学基金(62192714, 61701379),雷达信号处理国家级重点实验室支持计划项目(KGJ202204),中央高校基本科研业务费(QTZX22160),中国航天科技集团公司第八研究院产学研合作基金资助项目(SAST2021-011),陕西省天线与控制技术重点实验室开放基金
详细信息
    作者简介:

    郭 帅,博士生,主要研究方向为雷达目标识别

    陈 婷,博士生,主要研究方向为雷达目标识别

    王鹏辉,教授,博士生导师,主要研究方向为雷达目标识别、机器学习理论与应用研究等

    丁 军,副研究员,硕士生导师,主要研究方向为雷达目标识别、数据工程

    严俊坤,教授,博士生导师,主要研究方向为网络化雷达协同探测、雷达智能化探测等

    王英华,教授,博士生导师,主要研究方向为SAR图像目标检测与识别、极化SAR图像处理与解译等

    刘宏伟,教授,博士生导师,主要研究方向为雷达目标识别、认知雷达、网络化协同探测、雷达智能化探测等

    通讯作者:

    王鹏辉 wangpenghui@mail.xidian.edu.cn

    刘宏伟 hwliu@xidian.edu.cn

  • 责任主编:冯存前 Corresponding Editor: FENG Cunqian
  • 中图分类号: TN959

Multistation Cooperative Radar Target Recognition Based on an Angle-guided Transformer Fusion Network

Funds: The National Natural Science Foundation of China (62192714, 61701379), The Stabilization Support of National Radar Signal Processing Laboratory (KGJ202204), The Fundamental Research Funds for the Central Universities (QTZX22160), Industry-University-Research Cooperation of the 8th Research Institute of China Aerospace Science and Technology Corporation (SAST2021-011), Open Fund Shaanxi Key Laboratory of Antenna and Control Technology
More Information
  • 摘要: 多站协同雷达目标识别旨在利用多站信息的互补性提升识别性能。传统多站协同目标识别方法未直接考虑站间数据差异问题,且通常采用相对简单的融合策略,难以取得准确、稳健的识别性能。该文针对多站协同雷达高分辨距离像(HRRP)目标识别问题,提出了一种基于角度引导的Transformer融合网络。该网络以Transformer作为特征提取主体结构,提取单站HRRP的局部和全局特征。并在此基础上设计了3个新的辅助模块促进多站特征融合学习,角度引导模块、前级特征交互模块以及深层注意力特征融合模块。首先,角度引导模块使用目标方位角度对站间数据差异进行建模,强化了所提特征与多站视角的对应关系,提升了特征稳健性与一致性。其次,前级特征交互模块和深层注意力特征融合模块相结合的融合策略,实现了对各站特征的多阶段层次化融合。最后,基于实测数据模拟多站场景进行协同识别实验,结果表明所提方法能够有效地提升多站协同时的目标识别性能。

     

  • 图  1  融合网络结构示意图

    Figure  1.  Schematic of different fusion network structures

    图  2  角度引导Transformer融合网络结构

    Figure  2.  Angle guided Transformer fusion network framework

    图  3  切分映射及位置编码

    Figure  3.  Patch embedding and positional embedding

    图  4  Transformer模块

    Figure  4.  The Transformer module

    图  5  角度引导模块

    Figure  5.  The angle guided module

    图  6  前级特征交互模块

    Figure  6.  The pre-feature interaction module

    图  7  深层注意力特征融合模块

    Figure  7.  The deep attention feature fusion module

    图  8  置换不变Transformer与Transformer特征提取层对比图

    Figure  8.  Comparison of permutation invariant Transformer in feature fusion and Transformer in feature extraction

    图  9  模拟多站场景的目标HRRP

    Figure  9.  Target HRRP examples for simulating multistation scenarios

    图  10  测试集识别率混淆矩阵(%)

    Figure  10.  Confusion matrix of the recognition accuracy in test set (%)

    图  11  测试集数据与本文方法所提特征的二维t-SNE可视化

    Figure  11.  Visualization of test data and feature via two-dimensional t-SNE

    图  12  识别率和计算量随着HRRP子序列个数变化的曲线图

    Figure  12.  Accuracy and calculation amount changing with the number of HRRP subsequences

    表  1  雷达参数

    Table  1.   Parameters of radar

    参数数值
    信号带宽400 MHz
    距离分辨率0.375 m
    下载: 导出CSV

    表  2  目标物理参数

    Table  2.   Parameters of targets

    飞机型号机身长度(m)翼展宽度(m)机高(m)
    A32037.5734.1011.76
    A32144.5134.0911.76
    A330-258.8060.3017.40
    A330-363.6060.3016.85
    A35066.8064.7517.05
    下载: 导出CSV

    表  3  数据集样本分布

    Table  3.   Dataset samples distribution

    飞机型号训练样本数测试样本数
    A32026362594
    A32124822398
    A330-225562569
    A330-327852572
    A35028902181
    下载: 导出CSV

    表  4  实验参数配置

    Table  4.   Experimental parameters configuration

    实验配置参数
    训练轮次200
    批量大小64
    初始学习率1E–3
    优化器AdamW
    丢弃率0.1
    HRRP子序列的个数N8
    子序列编码维度D128
    Transformer模块数3
    注意力头数4
    角度编码全连接层输出维度(128, 1152)
    特征交互主支路权重0.6
    特征交互其余支路权重0.2
    深层注意力融合模块数1
    损失函数Cross Entropy Loss
    下载: 导出CSV

    表  5  实验结果

    Table  5.   Experimental results

    方法融合策略识别率(%)参数量(M)计算量(GFLOPs)
    CNN单站雷达181.564.190.30
    雷达287.274.190.30
    雷达390.714.190.30
    CNN多站数据融合86.354.190.30
    特征融合90.0812.591.76
    决策融合90.9612.591.76
    Transformer单站雷达187.120.890.46
    雷达288.030.890.46
    雷达393.210.890.46
    Transformer多站特征融合93.602.511.38
    本文方法方位角度引导+前级
    特征交互+深层注意
    力特征融合
    96.903.391.60
    下载: 导出CSV

    表  6  消融实验结果

    Table  6.   Results of ablation experiment

    方法角度引导前级特征
    交互
    深层注意力
    特征融合
    识别率(%)
    Transformer
    多站特征融合
    93.60
    94.50(+0.90)
    93.20(–0.40)
    93.70(+0.10)
    93.77(+0.17)
    94.47(+0.87)
    95.68(+2.08)
    本文方法96.90(+3.30)
    下载: 导出CSV
  • [1] DING Beicheng and CHEN Penghui. HRRP feature extraction and recognition method of radar ground target using convolutional neural network[C]. 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 2019: 658–661.
    [2] WAN Jinwei, CHEN Bo, YUAN Yijun, et al. Radar HRRP recognition using attentional CNN with multi-resolution spectrograms[C]. 2019 International Radar Conference (RADAR), Toulon, France, 2019: 1–4.
    [3] WANG Penghui, DU Lan, PAN Mian, et al. Radar HRRP target recognition based on linear dynamic model[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 662–665.
    [4] YANG Xiuzhu, ZHANG Xinyue, DING Yi, et al. Indoor activity and vital sign monitoring for moving people with multiple radar data fusion[J]. Remote Sensing, 2021, 13(18): 3791. doi: 10.3390/rs13183791
    [5] YANG Jiachen, ZHANG Zhou, MAO Wei, et al. IoT-based critical infrastructure enabled radar information fusion[J]. Computers & Electrical Engineering, 2022, 98: 107723. doi: 10.1016/j.compeleceng.2022.107723
    [6] WU Hao, DAI Dahai, JI Penghui, et al. High-resolution range profile recognition method of vehicle targets based on accelerated T-SNE with multi-polarization fusion[C]. 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2021: 72–76.
    [7] LIU Chang, ANTYPENKO R, SUSHKO I, et al. Marine distributed radar signal identification and classification based on deep learning[J]. Traitement du Signal, 2021, 38(5): 1541–1548. doi: 10.18280/ts.380531
    [8] HUANG Yuchen, LI Wei, DOU Zhiyang, et al. Activity recognition based on millimeter-wave radar by fusing point cloud and range-Doppler information[J]. Signals, 2022, 3(2): 266–283. doi: 10.3390/signals3020017
    [9] AGUILETA A A, BRENA R F, MAYORA O, et al. Multi-sensor fusion for activity recognition—A survey[J]. Sensors, 2019, 19(17): 3808. doi: 10.3390/s19173808
    [10] 周宁宁, 朱士涛, 年毅恒, 等. 一种基于多模态OAM波束的目标特征智能识别方法[J]. 雷达学报, 2021, 10(5): 760–772. doi: 10.12000/JR21056

    ZHOU Ningning, ZHU Shitao, NIAN Yiheng, et al. An intelligent target feature recognition method based on multi-mode OAM beams[J]. Journal of Radars, 2021, 10(5): 760–772. doi: 10.12000/JR21056
    [11] 邓冬虎, 张群, 罗迎, 等. 双基地ISAR系统中分辨率分析及微多普勒效应研究(英文)[J]. 雷达学报, 2013, 2(2): 152–167. doi: 10.3724/SP.J.1300.2013.13039

    DENG Donghu, ZHANG Qun, LUO Ying, et al. Resolution and micro-Doppler effect in Bi-ISAR system (in English)[J]. Journal of Radars, 2013, 2(2): 152–167. doi: 10.3724/SP.J.1300.2013.13039
    [12] 冯存前, 李靖卿, 贺思三, 等. 组网雷达中弹道目标微动特征提取与识别综述[J]. 雷达学报, 2015, 4(6): 609–620. doi: 10.12000/JR15084

    FENG Cunqian, LI Jingqing, HE Sisan, et al. Micro-Doppler feature extraction and recognition based on netted radar for ballistic targets[J]. Journal of Radars, 2015, 4(6): 609–620. doi: 10.12000/JR15084
    [13] 章鹏飞, 李刚, 霍超颖, 等. 基于双雷达微动特征融合的无人机分类识别[J]. 雷达学报, 2018, 7(5): 557–564. doi: 10.12000/JR18061

    ZHANG Pengfei, LI Gang, HUO Chaoying, et al. Classification of drones based on micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars, 2018, 7(5): 557–564. doi: 10.12000/JR18061
    [14] RYKUNOV M, DE GREEF E, KHALID H U R, et al. Multi-radar fusion for failure-tolerant vulnerable road users classification[C]. 2021 18th European Radar Conference (EuRAD), London, United Kingdom, 2022: 337–340.
    [15] SHU Haining and LIANG Qilian. Data fusion in a multi-target radar sensor network[C]. 2007 IEEE Radio and Wireless Symposium, Long Beach, USA, 2007: 129–132.
    [16] DU Lan, WANG Penghui, LIU Hongwei, et al. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182–3196. doi: 10.1109/TSP.2011.2141664
    [17] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, USA, 2019: 4171–4186.
    [18] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, Austria, 2021.
    [19] WANG Qiang, LI Bei, XIAO Tong, et al. Learning deep transformer models for machine translation[C]. 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 1810–1822.
    [20] CAO Kaidi, RONG Yu, LI Cheng, et al. Pose-robust face recognition via deep residual equivariant mapping[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5187–5196.
    [21] SUN Yuanshuang, WANG Yinghua, LIU Hongwei, et al. SAR target recognition with limited training data based on angular rotation generative network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1928–1932. doi: 10.1109/LGRS.2019.2958379
    [22] LOSHCHILOV I and HUTTER F. Decoupled weight decay regularization[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
    [23] YUAN Lele. A time-frequency feature fusion algorithm based on neural network for HRRP[J]. Progress in Electromagnetics Research M, 2017, 55: 63–71. doi: 10.2528/PIERM16123002
    [24] QUAN Daying, TANG Zeyu, WANG Xiaofeng, et al. LPI radar signal recognition based on dual-Channel CNN and feature fusion[J]. Symmetry, 2022, 14(3): 570. doi: 10.3390/sym14030570
    [25] ZHU Lijun. Selection of multi-level deep features via spearman rank correlation for synthetic aperture radar target recognition using decision fusion[J]. IEEE Access, 2020, 8: 133914–133927. doi: 10.1109/ACCESS.2020.3010969
    [26] CHEN Wenchao, CHEN Bo, PENG Xiaojun, et al. Tensor RNN with Bayesian nonparametric mixture for radar HRRP modeling and target recognition[J]. IEEE Transactions on Signal Processing, 2021, 69: 1995–2009. doi: 10.1109/TSP.2021.3065847
    [27] GUO Dandan, CHEN Bo, CHEN Wenchao, et al. Variational temporal deep generative model for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2020, 68: 5795–5809. doi: 10.1109/TSP.2020.3027470
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  1331
  • HTML全文浏览量:  836
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-03
  • 修回日期:  2023-04-02
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回