Loading [MathJax]/jax/output/SVG/jax.js

基于强化学习的认知雷达目标跟踪波形挑选方法

朱培坤 梁菁 罗子涵 沈晓峰

朱培坤, 梁菁, 罗子涵, 等. 基于强化学习的认知雷达目标跟踪波形挑选方法[J]. 雷达学报, 2023, 12(2): 412–424. doi: 10.12000/JR22239
引用本文: 朱培坤, 梁菁, 罗子涵, 等. 基于强化学习的认知雷达目标跟踪波形挑选方法[J]. 雷达学报, 2023, 12(2): 412–424. doi: 10.12000/JR22239
YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, et al. Human fall detection method using millimeter-wave radar based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656–664. doi: 10.12000/JR21015
Citation: ZHU Peikun, LIANG Jing, LUO Zihan, et al. Waveform selection method of cognitive radar target tracking based on reinforcement learning[J]. Journal of Radars, 2023, 12(2): 412–424. doi: 10.12000/JR22239

基于强化学习的认知雷达目标跟踪波形挑选方法

DOI: 10.12000/JR22239
基金项目: 国家自然科学基金(61731006),四川省自然科学基金(2023NSFSC0450),111计划(B17008)
详细信息
    作者简介:

    朱培坤,博士生,主要研究方向包括雷达波形设计、雷达传感器网络和分布式协同信号处理等

    梁 菁,教授,博士生导师,主要研究方向包括雷达传感器网络、分布式协同信号处理、模糊逻辑与机器学习等

    罗子涵,硕士生,主要研究方向包括雷达波形设计、机器学习和智能信号处理

    沈晓峰,研究员,主要研究方向包括雷达探测与目标识别、智能感知与信息系统、先进信号与信息处理

    通讯作者:

    梁菁 liangjing@uestc.edu.cn

  • 责任主编:胡卫东 Corresponding Editor: HU Weidong
  • 中图分类号: TN958

Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning

Funds: The National Natural Science Foundation of China (61731006), Sichuan Natural Science Foundation (2023NSFSC0450), The 111 Project under Grant (B17008)
More Information
  • 摘要: 认知雷达通过不断与环境互动并从经验中学习,根据获得的知识不断调整其波形、参数和照射策略,以在复杂多变的场景中实现稳健的目标跟踪,其波形设计在提高跟踪性能方面一直备受关注。该文提出了一种用于跟踪高机动目标的认知雷达波形选择框架,该框架考虑了恒定速度(CV)、恒定加速度(CA)和协同转弯(CT)模型的组合,在该框架的基础上设计了基于准则优化(CBO)和熵奖励Q学习(ERQL)方法进行最优波形选择。该方法将雷达与目标集成到一个闭环中,发射波形随目标状态的变化实时更新,从而达到对目标的最佳跟踪性能。数值结果表明,与CBO方法相比,所提出的ERQL方法大大减少了获取最优波形的处理时间,并实现了与CBO相近的跟踪性能,相比于固定参数(Fixed-P)方法,极大地提高了机动目标的跟踪精度。

     

  • 图  1  认知雷达波形选择框架

    Figure  1.  Cognitive radar waveform selection framework

    图  2  以CV, CA和CT为模型的IMM流程图

    Figure  2.  IMM flow chart based on CV, CA and CT models

    图  3  波形选择框图

    Figure  3.  Waveform selection block diagram

    图  4  机动目标运动轨迹

    Figure  4.  Trajectory of maneuvering target

    图  5  各运动模型在不同运动阶段被选择的概率

    Figure  5.  Probability of each motion model being selected in different motion stages

    图  6  目标位置跟踪RMSE曲线(X轴)

    Figure  6.  Target position tracking RMSE curve (X axis)

    图  7  目标速度跟踪RMSE曲线(X轴)

    Figure  7.  Target velocity tracking RMSE curve (X axis)

    图  8  目标跟踪脉冲持续时间变化曲线

    Figure  8.  Target tracking pulse duration variation curve

    图  9  目标跟踪调频斜率变化曲线

    Figure  9.  Target tracking frequency modulation slope variation curve

    图  10  目标跟踪熵态变化曲线

    Figure  10.  Target tracking entropy state variation curve

    图  11  各波形参数选择算法的平均耗时结果

    Figure  11.  The average time-consuming results of each waveform parameter selection algorithm

    表  1  CBO/ERQL算法

    Table  1.   CBO/ERQL algorithm

     输入:k1时刻的状态估计ˆxk1|k1, Pk1|k1k时刻的量
     测zk
     输出:最佳发射波形参数θk+1
     (1) 通过IMM滤波器中的交互输入和模型滤波过程,计算每个模
     型在时间k的估计值ˆxCVk|k, PCVk|k\ˆxCAk|k, PCAk|k\ˆxCTk|k, PCTk|k
     (2) 通过式(8)、式(10)、式(11)、式(13)计算各模型的预测概率
     ˉc(i)k和预测状态估计误差协方差P(i)k+1|k+1
     (3) 通过式(37)的加权融合,得到Pk+1|k+1
     (4) if (CBO)
     (5) 通过网格搜索找到式(30)或式(34)的最优波形参数θk+1
     (6) else (ERQL)
     (7) 根据式(38)和式(39)计算预测奖励rk+1,通过式(35)更新每
     个波形的Q表,重复此步骤,直到完成所需的单步预测次数或者
     Q表收敛。
     (8) 选择Q表中最大Q值所对应的策略作为k+1时刻的波形选择
     策略π*k+1(s)
     (9) 根据波形选择策略πk+1(s)选择波形参数θk+1
     (10) end if
     (11) 根据波形参数θk+1,发射最优波形。
    下载: 导出CSV

    表  2  不同方法的ARMSE对比结果

    Table  2.   ARMSE comparison results of different methods

    方法ˉXposˉYposˉXvelˉYvel
    Fixed-P18.05 m20.47 m2.88 m/s4.10 m/s
    Min-MSE13.83 m15.55 m1.50 m/s1.93 m/s
    Max-MI14.44 m15.79 m1.46 m/s1.92 m/s
    ERQL-1015.40 m17.98 m1.87 m/s2.55 m/s
    ERQL-4014.25 m15.95 m1.71 m/s2.32 m/s
    下载: 导出CSV

    表  3  CBO和ERQL方法相比于Fixed-P方法的跟踪性能改善与CPU时间比较(%)

    Table  3.   CBO and ERQL methods compared with Fixed-P methods for improved tracking performance and CPU time (%)

    方法XposYposXvelYvelCPU time
    Min-MSE23.3824.0447.9252.938619
    Max-MI20.6122.8649.1353.177893
    ERQL-1014.6812.1634.8437.80283
    ERQL-2016.0116.7637.2840.73545
    ERQL-4021.0522.0840.6343.411081
    ERQL-8015.5115.6841.1147.072016
    下载: 导出CSV
  • [1] YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2021, 69: 443–458. doi: 10.1109/TSP.2020.3047519
    [2] SUN Zhichao, YEN G G, WU Junjie, et al. Mission planning for energy-efficient passive UAV radar imaging system based on substage division collaborative search[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 275–288. doi: 10.1109/TCYB.2021.3090662
    [3] LIANG Jing and LIANG Qilian. Design and analysis of distributed radar sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(11): 1926–1933. doi: 10.1109/TPDS.2011.45
    [4] HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335
    [5] LUO Zihan, LIANG Jing, and XU Zekai. Intelligent waveform optimization for target tracking in radar sensor networks[C]. 10th International Conference on Communications, Signal Processing, and Systems (CSPS), Changbaishan, China, 2021: 165–172.
    [6] HAYKIN S. Cognition is the key to the next generation of radar systems[C]. 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island, USA, 2009: 463–467.
    [7] HAYKIN S, ZIA A, ARASARATNAM I, et al. Cognitive tracking radar[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 1467–1470.
    [8] GUERCI J R. Cognitive radar: A knowledge-aided fully adaptive approach[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 1365–1370.
    [9] GUERCI J R, GUERCI R M, RANAGASWAMY M, et al. CoFAR: Cognitive fully adaptive radar[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 984–989.
    [10] GUERCI J R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach[M]. 2nd ed. Norwood, USA: Artech House, 2020.
    [11] BELL K L, BAKER C J, SMITH G E, et al. Cognitive radar framework for target detection and tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1427–1439. doi: 10.1109/JSTSP.2015.2465304
    [12] SMITH G E, CAMMENGA Z, MITCHELL A, et al. Experiments with cognitive radar[C]. 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, 2015: 293–296.
    [13] ZHANG Lingzhao and JIANG Min. Cognitive radar target tracking algorithm based on waveform selection[C]. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2021: 1506–1510.
    [14] HULEIHEL W, TABRIKIAN J, and SHAVIT R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5075–5089. doi: 10.1109/TSP.2013.2269045
    [15] ALDAYEL O, MONGA V, and RANGASWAMY M. Successive QCQP refinement for MIMO radar waveform design under practical constraints[J]. IEEE Transactions on Signal Processing, 2016, 64(14): 3760–3774. doi: 10.1109/TSP.2016.2552501
    [16] FENG Shuo and HAYKIN S. Cognitive risk control for transmit-waveform selection in vehicular radar systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9542–9556. doi: 10.1109/TVT.2018.2857718
    [17] SAVAGE C O and MORAN B. Waveform selection for maneuvering targets within an IMM framework[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1205–1214. doi: 10.1109/TAES.2007.4383612
    [18] CLEMENTE C, SHOROKHOV I, PROUDLER I, et al. Radar waveform libraries using fractional Fourier transform[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 855–858.
    [19] ZHAO Dehua, WEI Yinsheng, and LIU Yongtan. Real-time waveform adaption in spectral crowed environment using a sub-waveforms-based library[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5.
    [20] NGUYEN N H, DOGANCAY K, and DAVIS L M. Adaptive waveform selection for multistatic target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 688–701. doi: 10.1109/TAES.2014.130723
    [21] ROMAN J. R., GARNHAM J. W. and ANTONIK P., Information Theoretic Criterion for Waveform Selection. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006., Waltham, MA, USA, 2006, 444-448, doi: 10.1109/SAM.2006.1706172.
    [22] CAO Xin, ZHENG Zhe, and AN Di. Adaptive waveform selection algorithm based on reinforcement learning for cognitive radar[C]. 2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 2019: 208–213.
    [23] HAN Bo, HUANG Hanqiao, LEI Lei, et al. An improved IMM algorithm based on STSRCKF for maneuvering target tracking[J]. IEEE Access, 2019, 7: 57795–57804. doi: 10.1109/ACCESS.2019.2912983
    [24] BLACKMAN S S, DEMPSTER R J, BUSCH M T, et al. IMM/MHT solution to radar benchmark tracking problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 730–738. doi: 10.1109/7.766953
    [25] KERSHAW D J and EVANS R J. Optimal waveform selection for tracking systems[J]. IEEE Transactions on Information Theory, 1994, 40(5): 1536–1550. doi: 10.1109/18.333866
    [26] SIRA S P, PAPANDREOU-SUPPAPPOLA A, and MORRELL D. Advances in Waveform-Agile Sensing for Tracking[M]. Cham: Springer, 2009: 59–60.
    [27] WILLIAMS J L. Information theoretic sensor management[D]. [Ph. D. dissertation], Massachusetts Institute of Technology, 2007: 41–42.
    [28] ATHANS M and TSE E. A direct derivation of the optimal linear filter using the maximum principle[J]. IEEE Transactions on Automatic Control, 1967, 12(6): 690–698. doi: 10.1109/TAC.1967.1098732
    [29] THORNTON C E, KOZY M A, BUEHRER R M, et al. Deep reinforcement learning control for radar detection and tracking in congested spectral environments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1335–1349. doi: 10.1109/TCCN.2020.3019605
    [30] WANG Qing, QIAO Yanming, and GAO Lirong. A cognitive radar waveform optimization approach based on deep reinforcement learning[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–6.
  • 期刊类型引用(34)

    1. 王萍,高娇娇,张振亚,殷涛,王文凯. 基于UWB二维信道状态信息的室内人员摔倒检测方法. 传感器与微系统. 2025(02): 155-159 . 百度学术
    2. 宋永坤,晏天兴,张可,刘显,戴永鹏,金添. 基于点云时空特征的超宽带雷达轻量化人体行为识别方法. 雷达学报(中英文). 2025(01): 1-15 . 百度学术
    3. 任振裕,吉辰卿,余潮,陈万里,王锐. 面向毫米波动作识别的视觉辅助信道仿真技术. 雷达学报(中英文). 2025(01): 90-101 . 百度学术
    4. 丁传威,刘芷麟,张力,赵恒,周庆,洪弘,朱晓华. 基于MIMO雷达成像图序列的切向人体姿态识别方法. 雷达学报(中英文). 2025(01): 151-167 . 百度学术
    5. 李未一,杨健,方旖,贾勇,张伟. 基于散射分离的多通道雷达人体行为识别方法. 电波科学学报. 2025(01): 172-183 . 百度学术
    6. 周杨,李剑鹏,王知雨,梁庆真. 基于4D点云和航迹信息的人员跌倒检测方法. 电子技术应用. 2024(01): 120-124 . 百度学术
    7. 张敏,张欢,史晓娟,梁卓文,张娜. 老年患者跌倒检测系统的设计与实现. 中国医学装备. 2024(02): 157-161 . 百度学术
    8. 林志伟,刘梓隆,袁煜盛,倪沁玮,蔡志明. 基于微多普勒特征的人体动作识别. 软件工程. 2024(03): 21-25 . 百度学术
    9. 杨路,雷雨霄,余翔. 基于FMCW雷达的人体生命体征信号预测算法. 雷达科学与技术. 2024(01): 43-56 . 百度学术
    10. 陈媛,林碧霞,陈瑞娥,李开新,蔡真真,聂伟琳,吴林静. 住院患者跌倒预防护理决策支持系统的开发与应用. 中国卫生质量管理. 2024(07): 12-16+31 . 百度学术
    11. 孙梓誉,顾晶. 基于雷达时频变换和残差网络的人体行为检测. 电子测量技术. 2024(10): 27-33 . 百度学术
    12. 林倩,杨姝玥,刘林盛. 浅析毫米波雷达在汽车电子中的应用. 天津理工大学学报. 2024(05): 80-85 . 百度学术
    13. 余亚男,贾勇,杜玲丽,林凡强,郭世盛. 基于时空Transformer的毫米波雷达三维人体姿态重构. 信号处理. 2024(10): 1910-1920 . 百度学术
    14. 吴哲夫,闫鑫悦,施汉银,龚树凤,方路平. 基于双流CNN-BiLSTM的毫米波雷达人体动作识别方法. 传感技术学报. 2024(10): 1754-1763 . 百度学术
    15. 卓智海,祝文胜,王双龙. 基于双注意力机制的FMCW雷达人体行为识别. 北京信息科技大学学报(自然科学版). 2024(05): 58-66 . 百度学术
    16. 龚树凤,施汉银,闫鑫悦,吴哲夫. 基于度量学习的毫米波雷达少样本人体动作识别. 传感技术学报. 2024(11): 1921-1930 . 百度学术
    17. 高鹏,张岩,唐新余,王蒙,季文飞. 结合注意力机制的雷达多信号动作识别方法. 计算机技术与发展. 2023(01): 157-164 . 百度学术
    18. 张为威,金彤彤,孙童心,黄钰茹,郜洵,郑址洪. 智能居家养老场景下跌倒检测摄像头的交互设计. 计算机辅助设计与图形学学报. 2023(02): 238-247 . 百度学术
    19. 田钰琪,刘康,张远辉. 基于毫米波雷达点云的人体动作识别. 中国计量大学学报. 2023(01): 66-73+83 . 百度学术
    20. 许向阳,张俊强,沈月健,李猛. FMCW毫米波雷达跌倒检测算法研究. 软件工程. 2023(05): 6-10 . 百度学术
    21. 刘伟,蒋雅婷,郑子淳. Wi-Fi技术在人体行为感知中的应用探讨. 信息与电脑(理论版). 2023(05): 209-212 . 百度学术
    22. 刘树博,赖招宇,罗先喜,李跃忠,李智. 基于毫米波雷达与情感神经网络的室内人员跌倒检测算法. 中国电子科学研究院学报. 2023(03): 203-212 . 百度学术
    23. 李牧,王昭,骆宇. 基于TsFresh-Stacking的毫米波雷达人体跌倒检测方法. 网络安全与数据治理. 2023(06): 71-78 . 百度学术
    24. 汪超,刘思远,郑慧,卓智海. 基于轻量化卷积神经网络的人体动作识别. 北京信息科技大学学报(自然科学版). 2023(03): 22-26 . 百度学术
    25. 周乐,陈一畅,刘铭哲,朱超. 基于多传感器融合的人体跌倒检测系统. 空天预警研究学报. 2023(02): 129-135 . 百度学术
    26. 丰玉华,魏怡,刘力手,丰圆丹,李可. 面向跌倒行人的MP-YOLOv5检测模型. 重庆邮电大学学报(自然科学版). 2023(05): 960-970 . 百度学术
    27. 漆晶,汪正东,谢广智. 基于胸腔信号样本的FMCW雷达身份验证. 雷达科学与技术. 2023(05): 539-546+554 . 百度学术
    28. 瓦其日体,李刚,赵志纯,则正华. 基于直方图分析和自适应遗传的雷达道路目标识别特征优选方法. 雷达学报. 2023(05): 1014-1030 . 本站查看
    29. 马泽宇,叶宁,徐康,王甦,王汝传. 基于FMCW雷达和ResNeSt-GRU的行为识别方法. 计算机与现代化. 2023(11): 101-107+112 . 百度学术
    30. 赵举,郑建立. 基于多传感器和Bi-LSTM的个性化跌倒检测研究. 智能计算机与应用. 2022(04): 146-150+158 . 百度学术
    31. 夏燕超,王彦,郭灵. 用于人体姿态检测的微波雷达研制. 南华大学学报(自然科学版). 2022(02): 49-56 . 百度学术
    32. 方震,简璞,张浩,姚奕成,耿芳琳,刘畅宇,闫百驹,王鹏,杜利东,陈贤祥. 基于FMCW雷达的非接触式医疗健康监测技术综述. 雷达学报. 2022(03): 499-516 . 本站查看
    33. 翟靖宇,陈金立. 基于LSTM-Attention的毫米波雷达行人轨迹预测方法. 中国电子科学研究院学报. 2022(06): 534-541 . 百度学术
    34. 杨洲,李洋,段洁利,徐兴,余家祥,申东英,袁浩天. 基于毫米波雷达的果园单木冠层信息提取. 农业工程学报. 2021(21): 173-182 . 百度学术

    其他类型引用(40)

  • 加载中
图(11) / 表(3)
计量
  • 文章访问数: 1372
  • HTML全文浏览量: 733
  • PDF下载量: 363
  • 被引次数: 74
出版历程
  • 收稿日期:  2022-12-21
  • 修回日期:  2023-02-08
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回