高分辨全极化昆虫雷达极化校准与昆虫体轴方向估计

李沐阳 胡程 王锐 李卫东 姜琦 李云龙 钱李昌 王江涛

李沐阳, 胡程, 王锐, 等. 高分辨全极化昆虫雷达极化校准与昆虫体轴方向估计[J]. 雷达学报, 2023, 12(2): 425–440. doi: 10.12000/JR22193
引用本文: 李沐阳, 胡程, 王锐, 等. 高分辨全极化昆虫雷达极化校准与昆虫体轴方向估计[J]. 雷达学报, 2023, 12(2): 425–440. doi: 10.12000/JR22193
LI Muyang, HU Cheng, WANG Rui, et al. Polarimetric calibration and insect orientation estimation of high-resolution fully polarimetric entomological radar[J]. Journal of Radars, 2023, 12(2): 425–440. doi: 10.12000/JR22193
Citation: LI Muyang, HU Cheng, WANG Rui, et al. Polarimetric calibration and insect orientation estimation of high-resolution fully polarimetric entomological radar[J]. Journal of Radars, 2023, 12(2): 425–440. doi: 10.12000/JR22193

高分辨全极化昆虫雷达极化校准与昆虫体轴方向估计

DOI: 10.12000/JR22193
基金项目: 国家自然科学基金(31727901, 62001021, 62201049),国家社会科学基金军事学项目(2020-SKJJ-C-011)
详细信息
    作者简介:

    李沐阳,博士生,主要研究方向为极化校准和极化信号处理

    胡 程,博士,教授,博士生导师,主要研究方向为昆虫雷达信号处理、GEO SAR成像处理、双基地SAR成像处理和前向散射雷达信号处理

    王 锐,博士,副教授,主要研究方向为昆虫雷达信号处理

    李卫东,博士后,主要研究方向为空中微弱目标雷达精细信号处理

    姜 琦,博士生,研究方向为群目标跟踪算法

    李云龙,博士后,主要研究方向为雷达目标检测与识别

    钱李昌,博士,高级工程师,主要研究方向为雷达信号处理、联合训练

    王江涛,博士生,研究方向为昆虫雷达极化信号处理

    通讯作者:

    胡程 hucheng.bit@gmail.com

  • 责任主编:李永祯 Corresponding Editor: LI Yongzhen
  • 中图分类号: TN95

Polarimetric Calibration and Insect Orientation Estimation of High-resolution Fully Polarimetric Entomological Radar

Funds: The National Natural Science Foundation of China (31727901, 62001021, 62201049), Military Science Project of National Social Science Foundation of China (2020-SKJJ-C-011)
More Information
  • 摘要: 迁飞性虫害突发性强、危害范围广,严重威胁国家粮食安全。昆虫雷达是监测昆虫迁飞的最有效手段,可为迁飞虫害预警防控提供关键信息支撑。传统昆虫雷达通过低分辨波形、旋转线极化天线等方式,实现昆虫体重、体轴方向等生物学参数测量。新型昆虫雷达采用调频步进频高分辨波形、瞬时全极化体制,可大幅提升昆虫生物学参数测量精度。但是,在传统极化测量误差之外,调频步进频成像会给不同极化通道引入新的乘性误差分量,导致极化通道间不一致更加复杂,必须进行高精度极化校准。针对以上问题,该文结合调频步进频波形特点对全极化测量模型进行了优化,并设计了一种基于松姿态约束下双定标体(金属球和金属丝)联合的高分辨全极化雷达极化校准方法,补偿了系统通道间不一致对极化信息测量的影响;在此基础上,进一步提出了基于生物对称模型的昆虫体轴方向估计方法,解析推导分析了极化通道间交叉串扰对体轴方向估计的影响机制。最后,利用多频全极化雷达(X, Ku, Ka)进行了极化校准和昆虫轴向测量实验,实测昆虫体轴方向测量误差优于3°,验证了所提方法的有效性。

     

  • 图  1  全极化雷达测量模型

    Figure  1.  Fully polarimetric entomological radar measurement model

    图  2  不同角度时金属丝散射矩阵4个通道的幅度

    Figure  2.  Amplitude of the scattering matrix elements at different angles

    图  3  昆虫体轴与极化方向示意图

    Figure  3.  Schematic diagram of orientation and polarization direction

    图  4  不同频率时的昆虫朝向误差统计结果

    Figure  4.  Statistical results of insect orientation errors at different frequencies

    图  5  交叉串扰对昆虫体轴方向估计的影响

    Figure  5.  Influence of cross-talk on the estimates of insect orientation

    图  6  交叉串扰对虫群体轴方向分布的影响

    Figure  6.  Influence of cross-talk on the orientation distribution of insect swarms

    图  7  定标体和昆虫测量场景

    Figure  7.  Calibrators and insects measurement scene

    图  8  不同实验场景下HH通道距离像

    Figure  8.  HH channel range profile under different experimental scenarios

    图  9  金属丝散射矩阵4个通道幅度测量结果

    Figure  9.  The measured amplitude of wire scattering matrix elements

    图  10  昆虫方向测量结果

    Figure  10.  Insect orientation measurement result

    图  11  夜间观测到的虫群体轴方向分布

    Figure  11.  Swarm orientation distribution observed at night

    图  12  昆虫轨迹方向分布

    Figure  12.  The distribution of insect trajectory direction

    图  13  最差情况下$ {\theta _{{\rm{err0}}}} $与系统隔离度的关系

    Figure  13.  The relationship between $ {\theta _{{\rm{err0}}}} $ and system isolation in the worst case

    表  1  不同交叉串扰时昆虫体轴方向估计误差

    Table  1.   Orientation estimation error under different cross-talk

    编号交叉串扰${C_1}$交叉串扰${C_2}$体轴估计误差均值(°)体轴估计误差标准差(°)体轴估计误差最大值(°)
    第1组$0.055{{\rm{e}}^{{\rm{j}}\pi /8}}$$0.055{{\rm{e}}^{{\rm{j}}\pi /8} }$8.9e-052.284.39
    第2组$0.055{{\rm{e}}^{{\rm{j}}\pi /8}}$${C_1}/2$–0.661.713.87
    第3组$0.055{{\rm{e}}^{{\rm{j}}\pi /8}}$$0.055{{\rm{e}}^{{\rm{j}}\pi /16}}$0.082.464.74
    下载: 导出CSV

    表  2  多频全极化雷达参数

    Table  2.   The parameters of multi-frequency fully polarimetric radar

    雷达参数数值雷达参数数值
    子频段带宽1 GHz距离分辨率0.2 m(汉明窗)
    中心频率X1: 9.5 GHz; X2: 11.5 GHz; Ku1: 15.5 GHz;
    Ku2: 17.5 GHz; Ka: 35 GHz
    同频段不同通道间隔离度>25 dB (3 dB波束宽度内)
    天线形式X, Ku, Ka 3波段共口径反射面天线主反射面直径2400 mm
    3 dB波束宽度X频段:<1.1°;Ku频段:<0.6°;Ka频段:<0.35°天线增益X频段:>42 dB;Ku频段:
    >46 dB;Ka频段:>52 dB
    波形体制调频步进频(每个子频段10个跳频点)脉冲宽度(实际)0.4 μs
    跳频间隔100 MHz子跳频点信号带宽125 MHz
    脉冲重复周期20 μs探测距离300~1350 m
    峰值功率X频段:≥580 W;Ku频段:≥100 W;
    Ka频段:≥20 W
    下载: 导出CSV

    表  3  不同频段昆虫体轴方向测量误差

    Table  3.   Measurement error of insect orientation in different frequencies

    昆虫高度(m)频段角度估计误差均值(°)角度估计误差标准差(°)角度估计误差最大值(°)
    480X1–0.0770.832.70
    X2–0.0630.882.54
    Ku1–0.0890.952.88
    Ku2–0.0931.012.90
    Ka–0.1301.312.98
    440X10.0250.751.57
    X20.0380.871.84
    Ku10.0910.942.28
    Ku20.0970.912.33
    Ka0.1901.382.80
    400X10.0010.761.32
    X20.0770.921.94
    Ku10.0991.091.98
    Ku20.1081.212.01
    Ka0.2101.442.55
    下载: 导出CSV
  • [1] HU Gao, LIM K S, HORVITZ N, et al. Mass seasonal bioflows of high-flying insect migrants[J]. Science, 2016, 354(6319): 1584–1587. doi: 10.1126/science.aah4379
    [2] WANG Rui, HU Cheng, LIU Changjiang, et al. Migratory insect multifrequency radar cross sections for morphological parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3450–3461. doi: 10.1109/TGRS.2018.2884926
    [3] HU Cheng, LI Weidong, WANG Rui, et al. Insect biological parameter estimation based on the invariant target parameters of the scattering matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6212–6225. doi: 10.1109/TGRS.2019.2904869
    [4] HU Cheng, LI Wenji, WANG Rui, et al. Accurate insect orientation extraction based on polarization scattering matrix estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1755–1759. doi: 10.1109/LGRS.2017.2733719
    [5] SMITH A D, RILEY J R, and GREGORY R D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 1993, 340(1294): 393–404. doi: 10.1098/rstb.1993.0081
    [6] BEERWINKLE K R, WITZ J A, and SCHLEIDER P G. An automated, vertical looking, X-band radar system for continuously monitoring aerial insect activity[J]. Transactions of the ASAE, 1993, 36(3): 965–970. doi: 10.13031/2013.28423
    [7] DRAKE V A, CHAPMAN J W, LIM K S, et al. Ventral-aspect radar cross sections and polarization patterns of insects at X band and their relation to size and form[J]. International Journal of Remote Sensing, 2017, 38(18): 5022–5044. doi: 10.1080/01431161.2017.1320453
    [8] LONG Teng, HU Cheng, WANG Rui, et al. Entomological radar overview: System and signal processing[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(1): 20–32. doi: 10.1109/MAES.2019.2955575
    [9] LI Chao, LI Yongzhen, YANG Yong, et al. Moving target’s scattering matrix estimation with a polarimetric radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5540–5551. doi: 10.1109/TGRS.2020.2966905
    [10] UNAL C M H, NIEMEIJER R J, VAN SINTTRUYEN J S, et al. Calibration of a polarimetric radar using a rotatable dihedral corner reflector[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 837–845. doi: 10.1109/36.298011
    [11] 崔兴超, 粟毅, 陈思伟. 融合极化旋转域特征和超像素技术的极化SAR舰船检测[J]. 雷达学报, 2021, 10(1): 35–48. doi: 10.12000/JR20147

    CUI Xingchao, SU Yi, and CHEN Siwei. Polarimetric SAR ship detection based on polarimetric rotation domain features and superpixel technique[J]. Journal of Radars, 2021, 10(1): 35–48. doi: 10.12000/JR20147
    [12] 杨汝良, 戴博伟, 李海英. 极化合成孔径雷达极化层次和系统工作方式[J]. 雷达学报, 2016, 5(2): 132–142. doi: 10.12000/JR16013

    YANG Ruliang, DAI Bowei, and LI Haiying. Polarization hierarchy and system operating architecture for polarimetric synthetic aperture radar[J]. Journal of Radars, 2016, 5(2): 132–142. doi: 10.12000/JR16013
    [13] 安孟昀, 殷加鹏, 黄建开, 等. 一种双极化气象雷达自适应谱极化滤波方法[J]. 雷达学报, 2022, 11(3): 408–417. doi: 10.12000/JR21199

    AN Mengyun, YIN Jiapeng, HUANG Jiankai, et al. Adaptive spectral polarization filter design for dual-polarization weather radar[J]. Journal of Radars, 2022, 11(3): 408–417. doi: 10.12000/JR21199
    [14] SARABANDI K and ULABY F T. A convenient technique for polarimetric calibration of single-antenna radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(6): 1022–1033. doi: 10.1109/36.62627
    [15] GAU J R J and BURNSIDE W D. New polarimetric calibration technique using a single calibration dihedral[J]. IEE Proceedings - Microwaves, Antennas and Propagation, 1995, 142(1): 19–25. doi: 10.1049/ip-map:19951544
    [16] DAI Huanyao, CHANG Yuliang, DAI Dahai, et al. Calibration method of phase distortions for cross polarization channel of instantaneous polarization radar system[J]. Journal of Systems Engineering and Electronics, 2010, 21(2): 211–218. doi: 10.3969/j.issn.1004-4132.2010.02.007
    [17] YU Teng, LI Muyang, LI Weidong, et al. Polarimetric calibration technique for a fully polarimetric entomological radar based on antenna rotation[J]. Remote Sensing, 2022, 14(7): 1551. doi: 10.3390/rs14071551
    [18] HUANG Peikang, NING Chao, XU Xiaojian, et al. Solution for polarimetric radar cross section measurement and calibration[J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 211–216. doi: 10.1109/JSEE.2014.00025
    [19] 何密, 李永祯, 王雪松, 等. 基于Pauli基分解的极化校准算法[J]. 宇航学报, 2011, 32(12): 2589–2595. doi: 10.3873/j.issn.1000-1328.2011.12.018

    HE Mi, LI Yongzhen, WANG Xuesong, et al. A polarimetric calibration algorithm based on Pauli-basis decomposition[J]. Journal of Astronautics, 2011, 32(12): 2589–2595. doi: 10.3873/j.issn.1000-1328.2011.12.018
    [20] 何密. 同时极化测量体制雷达的校准方法研究[D]. [博士论文], 国防科学技术大学, 2014.

    HE Mi. Study on calibration methods for simultaneous measurement polarimetric radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2014.
    [21] ZENG Tao, MAO Cong, HU Cheng, et al. Grating lobes suppression method for stepped frequency GB-SAR system[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 987–995. doi: 10.1109/JSEE.2014.00113
    [22] ALDHOUS A C. An investigation of the polarisation dependence of insect radar cross sections at constant aspect[D]. [Ph. D. dissertation], Cranfield University, 1989.
    [23] CAMERON W L and LEUNG L K. Feature motivated polarization scattering matrix decomposition[C]. IEEE International Conference on Radar, Arlington, USA, 1990: 549–557.
    [24] HU Cheng, LI Muyang, LI Weidong, et al. A data-driven polarimetric calibration method for entomological radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114014. doi: 10.1109/TGRS.2022.3178108
    [25] HU Cheng, LI Weidong, WANG Rui, et al. Discrimination of parallel and perpendicular insects based on relative phase of scattering matrix eigenvalues[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3927–3940. doi: 10.1109/TGRS.2019.2959622
    [26] 罗佳. 天线空域极化特性及应用[D]. [博士论文], 国防科学技术大学, 2008.

    LUO Jia. Application and analysis of spatial polarization characteristics for antenna[D]. [Ph. D. dissertation], National University of Defense Technology, 2008.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  1298
  • HTML全文浏览量:  578
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-24
  • 修回日期:  2022-11-08
  • 网络出版日期:  2022-11-17
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回